
Physics 8 — Wednesday, November 22, 2017

I HW11 due Friday, December 1.
I Today: a tutorial of the “Processing” computer programming

language — whose purpose is to learn how to code within the
context of the visual arts. It makes coding fun and visual.

I Extra-credit options (if you’re interested):
I Read Onouye Ch 9 (columns) and write 1–2 pages

summarizing what you learned.
I Read Mazur Ch 13 (gravity) and/or Ch 14 (special relativity)

and summarize what you learned.
I Write up your response to podcast about near-fatal flaw in

Citigroup Center, 601 Lexington Ave, NYC http://

positron.hep.upenn.edu/p8/files/citicorp_tower.mp3
I Learn to use Mathematica (ask me how), which is a system for

doing mathematics by computer. (It is the brains behind
Wolfram Alpha.) Penn’s site license makes Mathematica
free-of-charge for SAS and Wharton students.

I Use “Processing” to write a program to draw or animate
something that interests you. (Not necessarily physics-related.)

I Knowing “how to code” is empowering & enlightening. So I
offer you an excuse to give it a try, for extra credit, if you wish.

http://positron.hep.upenn.edu/p8/files/citicorp_tower.mp3
http://positron.hep.upenn.edu/p8/files/citicorp_tower.mp3

The software is free & open-source. Runs on Mac, Windows,
Linux. The “getting started” book will set you back about $15.

or start with the in-browser video tutorial (no download needed):
http://hello.processing.org

http://hello.processing.org

“hello world” program

Let’s draw a circle and a line.

More commonly, a Processing program has a function called
setup() that runs once when the program starts, and another
function called draw() that runs once per frame.

void setup() {

// this function runs once when the program starts up

size(900, 450); // sets width & height of window (in pixels)

}

void draw() {

// this function runs once per frame of the animation

line(0, frameCount, width, height-frameCount);

}

Let’s make it do something repetitive

void setup() {

// this function runs once when the program starts up

size(900, 450); // sets width & height of window (in pixels)

}

void draw() {

// this function runs once per frame of the animation

float dy = 0.5*height + 0.5*height*sin(0.01*frameCount);

line(0, dy, width, height-dy);

}

How about repeating something more exciting?

void setup() {

// this function runs once when the program starts up

size(900, 450); // sets width & height of window (in pixels)

}

void draw() {

// this function runs once per frame of the animation

float dy = 0.5*height + 0.5*height*sin(0.01*frameCount);

line(0, dy, width, height-dy);

float t = 0.02*frameCount;

float x = 0.5*width + 200*cos(t);

float y = 0.5*height + 200*sin(t);

ellipse(x, y, 20, 20);

}

Did you ever have a Spirograph toy when you were a kid?

void setup() {

size(900, 450);

}

void draw() {

float t = 0.02*frameCount;

float x = 0.5*width + 200*cos(t) + 30*cos(11*t);

float y = 0.5*height + 200*sin(t) - 30*sin(11*t);

ellipse(x, y, 5, 5);

}

How about something that starts to resemble physics? A really,
really low-tech animation of an planet orbiting a star.

void setup() {

size(900, 450);

}

void draw() {

float t = 0.01*frameCount;

float xsun = 0.5*width;

float ysun = 0.5*height;

ellipse(xsun, ysun, 20, 20);

float rplanet = 200;

float xplanet = xsun + rplanet*cos(t);

float yplanet = ysun + rplanet*sin(t);

ellipse(xplanet, yplanet, 10, 10);

}

Let’s add a moon in orbit around the planet.

void draw() {

float t = 0.01*frameCount;

float xsun = 0.5*width;

float ysun = 0.5*height;

// clear screen before each new frame

background(128);

// draw sun

ellipse(xsun, ysun, 20, 20);

float rplanet = 200;

float xplanet = xsun + rplanet*cos(t);

float yplanet = ysun + rplanet*sin(t);

// draw planet

ellipse(xplanet, yplanet, 10, 10);

float rmoon = 30;

float xmoon = xplanet + rmoon*cos(t*365/27.3);

float ymoon = yplanet + rmoon*sin(t*365/27.3);

// draw moon

ellipse(xmoon, ymoon, 5, 5);

}

How about adding an inner planet?

void draw() {

... other stuff suppressed ...

// draw moon

ellipse(xmoon, ymoon, 5, 5);

// add second planet

float year_mercury_days = 115.88; // from Wikipedia

float T_ratio = year_mercury_days/365.25;

float R_ratio = pow(T_ratio, 0.6667);

xplanet = xsun + R_ratio*rplanet*cos(t/T_ratio);

yplanet = ysun + R_ratio*rplanet*sin(t/T_ratio);

ellipse(xplanet, yplanet, 7, 7);

}

Animate a pendulum

void draw() {

float t = 0.01*frameCount;

float g = 9.8;

float L = 2.0;

float degree = PI/180.0;

float amplitude = 20*degree;

float omega = sqrt(g/L);

float theta = amplitude * sin(omega*t);

float xbob = L * sin(theta);

float ybob = L * cos(theta);

// convert coordinates into pixel coordinates

... continued on next slide ...

}

void draw() {

... continued from previous slide ...

// convert coordinates into pixel coordinates

float xpixel_pivot = 0.5*width;

float ypixel_pivot = 0.1*height;

float scale = 100.0; // pixels per meter

float xpixel_bob = xpixel_pivot + scale*xbob;

float ypixel_bob = ypixel_pivot + scale*ybob;

// clear the screen for each new frame of animation

background(128);

// draw the string

line(xpixel_pivot, ypixel_pivot, xpixel_bob, ypixel_bob);

// draw the bob

ellipse(xpixel_bob, ypixel_bob, 20, 20);

}

Animate a mass bobbing on a spring

void draw() {

float t = 0.01*frameCount;

float omega = 1.0;

float amplitude = 0.5;

float Lequilibrium = 2.0;

float xbob = 0;

float ybob = Lequilibrium + amplitude * cos(omega*t);

float xpixel_anchor = 0.5*width;

float ypixel_anchor = 0.01*height;

float scale = 100.0;

float xpixel_bob = xpixel_anchor + scale*xbob;

float ypixel_bob = ypixel_anchor + scale*ybob;

// draw the bob

float rbob = 15;

ellipse(xpixel_bob, ypixel_bob, 2*rbob, 2*rbob);

}

Clear screen between frames; draw the spring

void draw() {

... other stuff suppressed ...

// clear the screen for each new frame

background(200);

// draw the bob

float rbob = 15;

ellipse(xpixel_bob, ypixel_bob, 2*rbob, 2*rbob);

// draw the spring as a series of zig-zag lines

int nzigzag = 20;

for (int i=0; i<nzigzag; i++) {

float spring_top = ypixel_anchor;

float spring_bottom = ypixel_bob - rbob;

float dy = (spring_bottom-spring_top)/nzigzag;

float xzig = xpixel_anchor - 20;

float yzig = ypixel_anchor + i*dy;

float xzag = xpixel_anchor + 20;

float ymid = yzig + 0.5*dy;

float yzag = yzig + dy;

line(xzig, yzig, xzag, ymid);

line(xzag, ymid, xzig, yzag);

}

}

Here’s a more elaborate example, from the online Processing
tutorials pages: http://processing.org/tutorials/trig/

http://processing.org/tutorials/trig/

Back to the spring: let’s add some “physics” to it.

// we will update position & velocity frame-by-frame

float y = 1.49;

float vy = 0.0;

void draw() {

float dt = 0.01;

float k = 20.0;

float m = 1.0;

float g = 9.8;

float Lrelaxed = 1.0;

float omega = sqrt(k/m);

y = y + vy*dt;

float Fy = m*g - k*(y-Lrelaxed);

vy = vy + (Fy/m)*dt;

float xbob = 0;

float ybob = Lrelaxed + y;

... the rest is unchanged ...

https://en.wikipedia.org/wiki/Leapfrog_integration

https://en.wikipedia.org/wiki/Leapfrog_integration

I If this looks interesting to you, then I recommend that you
start with this easy online video tutorial that will help you get
started with coding in Processing in about an hour! No
download or software install is needed for this tutorial — you
type your first programs directly into your web browser as you
follow along with the video.
http://hello.processing.org

I I tried to animate a bending beam, but I failed utterly!

I If you’re in Addams Hall often, you might ask Orkan Telhan if
he has ideas — I believe he still teaches Processing in
FNAR 264 / VLST 264, “Art, Design, and Digital Culture.”

I There are also tons of examples at http://processing.org
that you could use as starting points or for inspiration.

http://hello.processing.org
http://processing.org

I If you’re feeling super-ambitious, and you want to do
something highly physics-oriented (which might require you to
read Mazur’s Chapter 13 on Gravity, which would earn you
additional extra-credit), then you could start with my
“dumbplanets” example (Sun, Mercury, Earth, Moon) and
convert it to use “physics,” i.e. to evaluate the equations of
motion for each time step.

I You would need to learn (unless you know it from high-school
physics) about Newton’s universal gravitational force:

F =
Gm1m2

r2

I This would be a simplification of a CIS110 project idea:
www.cis.upenn.edu/~cis110/12fa/hw/hw02/nbody.shtml

I But you’re welcome to do something much simpler, and not
necessarily at all physics-related!

www.cis.upenn.edu/~cis110/12fa/hw/hw02/nbody.shtml

An example from a Fall 2013 student: drawing a fractal.

Another Fall 2013 student: ball bouncing between two springs

An example from a Fall 2015 student: an animated panda.

An example from a Fall 2015 student: a rotating fractal.

An example from a Fall 2015 student: a minion.

Fall 2015 student: bird moves where you move the mouse pointer.

Physics 8 — Wednesday, November 22, 2017

I HW11 due Friday, December 1.
I Today: a tutorial of the “Processing” computer programming

language — whose purpose is to learn how to code within the
context of the visual arts. It makes coding fun and visual.

I Extra-credit options (if you’re interested):
I Read Onouye Ch 9 (columns) and write 1–2 pages

summarizing what you learned.
I Read Mazur Ch 13 (gravity) and/or Ch 14 (special relativity)

and summarize what you learned.
I Write up your response to podcast about near-fatal flaw in

Citigroup Center, 601 Lexington Ave, NYC http://

positron.hep.upenn.edu/p8/files/citicorp_tower.mp3
I Learn to use Mathematica (ask me how), which is a system for

doing mathematics by computer. (It is the brains behind
Wolfram Alpha.) Penn’s site license makes Mathematica
free-of-charge for SAS and Wharton students.

I Use “Processing” to write a program to draw or animate
something that interests you. (Not necessarily physics-related.)

I Knowing “how to code” is empowering & enlightening. So I
offer you an excuse to give it a try, for extra credit, if you wish.

http://positron.hep.upenn.edu/p8/files/citicorp_tower.mp3
http://positron.hep.upenn.edu/p8/files/citicorp_tower.mp3

