
Physics 8 — Friday, November 1, 2019
I Turn in HW8. Pick up HW9 handout in back corner of room.
I This week, you read Ch2 (statics) and Ch3 (determinate

systems: equilibrium, trusses, arches) of Onouye/Kane. Next
week, you’ll skim Ch4 (load tracing) and read Ch5 (strength
of materials). Feel free to buy one of my $10 used copies if
you wish. At the end of the term, you can keep it, or sell it
back to me for $10.

A beam of mass M = 20 kg and length
L = 2 m is attached to a wall by a hinge.
A sign of mass m = 10 kg hangs from the
end of the beam. The end of the beam is
supported by a cable (at θ = 30◦ angle
w.r.t. horizontal beam), which is anchored
to the wall above the hinge.

Let’s start by drawing an EFBD for the
beam, showing each force acting on the
beam and its line of action.



A beam of mass M = 20 kg and length L = 2 m is attached to a
wall by a hinge. A sign of mass m = 10 kg hangs from the end of
the beam. The end of the beam is supported by a cable (at
θ = 30◦ angle w.r.t. horizontal beam), which is anchored to the
wall above the hinge.

What forces act on the
beam? (Draw EFBD.)

Find the cable tension T .

Find the “reaction” forces
Fx and Fy exerted by the
hinge on the beam.

What 3 equations can we
write for the beam? (Next
few slides.)

(Redraw this on the board.)



Beam mass M, length L. Sign mass m. Cable angle θ from
horizontal. Hinge exerts forces Fx , Fy on beam.

How do we write “sum of horizontal forces (on beam) = 0” ?

(A) Fx + T cos θ = 0

(B) Fx + T sin θ = 0

(C) Fx − T cos θ = 0

(D) Fx − T sin θ = 0



Beam mass M, length L. Sign mass m. Cable angle θ from
horizontal. Hinge exerts forces Fx , Fy on beam.

How do we write “sum of vertical forces (on beam) = 0” ?

(A) Fy + T cos θ + (M + m)g = 0

(B) Fy + T cos θ − (M + m)g = 0

(C) Fy + T cos θ − (M + m)g = 0

(D) Fy + T sin θ + (M + m)g = 0

(E) Fy + T cos θ − (M + m)g = 0

(F) Fy + T sin θ − (M + m)g = 0

(G) Fy − T cos θ − (M + m)g = 0

(H) Fy − T sin θ − (M + m)g = 0



Beam mass M, length L. Sign mass m. Cable angle θ from
horizontal. Hinge exerts forces Fx , Fy on beam.

How do we write “sum of torques (about hinge) = 0” ?

(A) +L
2Mg + Lmg + LT cos θ = 0

(B) +L
2Mg + Lmg + LT sin θ = 0

(C) −L
2Mg + Lmg + LT cos θ = 0

(D) −L
2Mg + Lmg + LT sin θ = 0

(E) −L
2Mg − Lmg + LT cos θ = 0

(F) −L
2Mg − Lmg + LT sin θ = 0



The 3 equations for static equilibrium in the xy plane

sum of horizontal forces = 0:

Fx − T cos θ = 0

sum of vertical forces = 0:

Fy + T sin θ − (M + m)g = 0

sum of torques (a.k.a. moments) about hinge = 0:

−L

2
Mg − Lmg + LT sin θ = 0



Here’s my solution



Let’s build & measure a simplified arch

Often the essence of physics is to reduce a complicated problem to
a similar problem that is easier to analyze.

(Does this make the function of a “roller support” more obvious?!)



(We’ll emphasize function over form here . . .)

Often the essence of physics is to reduce a complicated problem to
a similar problem that is easier to analyze. Use a cable to hold
bottom together so that we can use scale to measure tension.

Weight (mg) of each side is 20 N.

We’ll exploit mirror symmetry and
analyze just one side of arch.

What forces act (and where) on the
r.h.s. of the arch? (Draw EFBD for
the right-hand board.)



Use a cable to hold bottom of “arch” together so that we can use
scale to measure tension. Weight (mg) of each side is 20 N. We’ll
exploit mirror symmetry and analyze just one side of arch.

Right side shows EFBD for right-hand board.



How many unknown variables is it possible to determine using the
equations for static equilibrium in a plane?

(A) one

(B) two

(C) three

(D) four

(E) five



Static equilibrium lets us write down three equations for a given
object:

∑
Fx = 0,

∑
Fy = 0,

∑
Mz = 0. Let’s first sum up the

“moments” (a.k.a. torques) about the top hinge.

Which statement correctly expresses
∑

Mz = 0 (a.k.a.
∑
τ = 0)?

(Let the mass and length of each wooden board be L and m.)

(A) −mg
(
L
2

)
cos θ + FNL cos θ − TL sin θ = 0

(B) −mg
(
L
2

)
cos θ + FNL cos θ + TL sin θ = 0

(C) −mg
(
L
2

)
sin θ + FNL sin θ − TL cos θ = 0

(D) −mg
(
L
2

)
sin θ + FNL sin θ + TL cos θ = 0

(E) +mg
(
L
2

)
cos θ + FNL cos θ − TL sin θ = 0

(F) +mg
(
L
2

)
cos θ + FNL cos θ + TL sin θ = 0

(G) +mg
(
L
2

)
sin θ + FNL sin θ − TL cos θ = 0

(H) +mg
(
L
2

)
sin θ + FNL sin θ + TL cos θ = 0



Let’s start with torque (about top hinge) due to tension T .

I Usual convention: clockwise = negative, ccw = positive.

I Draw vector ~r from pivot to point where force is applied.

I Draw force vector ~F , with its line-of-action passing through
the point where the force is applied.

I Decompose ~r to find component r⊥ that is perpendicular to
~F . The component r⊥ is called the “lever arm.”

I Magnitude of torque is |τ | = (r⊥)(F ).



Alternative method: use (r)(F⊥) instead of (r⊥)(F ).

I Draw vector ~r from pivot to point where force is applied.

I Draw force vector ~F , with its line-of-action passing through
the point where the force is applied.

I Decompose ~F to find component F⊥ perpendicular to ~r .

I Magnitude of torque is |τ | = (r)(F⊥).



Now you try it for the normal force ~FN .

I Draw vector ~r from pivot to point where force is applied.

I Draw force vector ~F , with its line-of-action passing through
the point where the force is applied.

I Decompose ~r to find component r⊥ that is perpendicular to
~F . The component r⊥ is called the “lever arm.”

I Magnitude of torque is |τ | = r⊥F .

Which component of ~r is
perpendicular to the normal
force ~FN ?

(A) horizontal component

(B) vertical component



Now you try it for the normal force ~FN .

I Draw vector ~r from pivot to point where force is applied.

I Draw force vector ~F , with its line-of-action passing through
the point where the force is applied.

I Decompose ~r to find component r⊥ that is perpendicular to
~F . The component r⊥ is called the “lever arm.”

I Magnitude of torque is |τ | = r⊥F .

How long is the horizontal
component of ~r (i.e. the ~r
component which is
perpendicular to ~F ) ?

(A) L cos θ

(B) L sin θ

(C) L tan θ



OK, now back to the original question: Let’s sum up the
“moments” (a.k.a. torques) about the top hinge.

Which statement correctly expresses
∑

Mz = 0 (a.k.a.
∑
τ = 0)?

(Let the mass and length of each wooden board be L and m.)

(A) −mg
(
L
2

)
cos θ + FNL cos θ − TL sin θ = 0

(B) −mg
(
L
2

)
cos θ + FNL cos θ + TL sin θ = 0

(C) −mg
(
L
2

)
sin θ + FNL sin θ − TL cos θ = 0

(D) −mg
(
L
2

)
sin θ + FNL sin θ + TL cos θ = 0

(E) +mg
(
L
2

)
cos θ + FNL cos θ − TL sin θ = 0

(F) +mg
(
L
2

)
cos θ + FNL cos θ + TL sin θ = 0

(G) +mg
(
L
2

)
sin θ + FNL sin θ − TL cos θ = 0

(H) +mg
(
L
2

)
sin θ + FNL sin θ + TL cos θ = 0

Next: what about
∑

Fx = 0 and
∑

Fy = 0 ?



Next: what about
∑

Fx = 0 and
∑

Fy = 0 ?



We said mg = 20 N, so we expect the string tension to be

T =
10 N

tan θ

How would this change if we suspended a weight Mg from the
hinge? (By symmetry, each side of arch carries half of this Mg .)



Let’s use forces and torques to
analyze the big red wheel that we
first saw on Monday. The wheel
has rotational inertia I .

The string is wrapped at radius
R, with an object of mass m
dangling on the string.

For the dangling object, write

may =
∑

Fy

For the cylinder, write

Iα =
∑

τ



After some math, I get

α =
mgR

Iwheel + mR2
≈ mgR

Iwheel

(The approximation is for the limit where the object falls at a� g ,
so the string tension is T = (mg −ma) ≈ mg .)



Why did increasing the dangling
mass m increase the wheel’s
rotational acceleration α ?

Why did increasing the radius R
from which the dangling mass
was suspended increase the
wheel’s rotational acceleration?

Why did sliding the big rotating
masses farther out on the
extended “arms” decrease the
wheel’s rotational acceleration?



Let’s go back and use torque to analyze another problem that last
week we were only able to analyze using energy conservation:
a cylinder rolling (without slipping) down an inclined plane.

What 3 forces act on the cylinder? What is the rotation axis?
Draw FBD and extended FBD. What are the torque(s) about this
axis? How are α and a related? Write ~F = m~a and τ = Iα.



Iα =
∑

τ

I
(ax
R

)
= RF s

F s =

(
I

R2

)
ax

max = mg sin θ − F s

max = mg sin θ −
(

I

R2

)
ax(

m +
I

R2

)
ax = mg sin θ

ax =
mg sin θ

m + I
R2

=
g sin θ

1 +
(

I
mR2

)
Remember that the object with the larger “shape factor”
I/(mR2) rolls downhill more slowly.



While we’re here, let’s revisit the “center-of-mass chalkline”
demonstration from a few weeks ago.

Now that we know about torque, we can see why the CoM always
winds up directly beneath the pivot, once we understand that the
line-of-action for gravity passes through the CoM.



Another equilibrium problem!

The top end of a ladder of inertia m rests against a smooth (i.e.
slippery) wall, and the bottom end rests on the ground. The
coefficient of static friction between the ground and the ladder is
µs . What is the minimum angle between the ground and the
ladder such that the ladder does not slip?

Let’s start by drawing an EFBD for the ladder.



Why must we say the
wall is slippery?

Is the slippery wall
more like a pin or a
roller support?

What plays the role
here that string tension
played in the previous
problem?

Does the combination
of two forces at the
bottom act more like a
pin or a roller support?

Which forces would an
engineer call “reaction”
forces?



Which choice of pivot axis will give us the simplest
equation for

∑
Mz = 0 ? (We’ll get an equation

involving only two forces if we choose this axis.)

(A) Use bottom of ladder as pivot axis.

(B) Use center of ladder as pivot axis.

(C) Use top of ladder as pivot axis.



How would I write
∑

Mz = 0 about the bottom
end of the ladder? (Take length of ladder to be L.)

(A) FW L cos θ + mgL sin θ = 0

(B) FW L cos θ + mg L
2 sin θ = 0

(C) FW L cos θ −mgL sin θ = 0

(D) FW L cos θ −mg L
2 sin θ = 0

(E) FW L sin θ + mgL cos θ = 0

(F) FW L sin θ + mg L
2 cos θ = 0

(G) FW L sin θ −mgL cos θ = 0

(H) FW L sin θ −mg L
2 cos θ = 0

What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?



What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?

Let’s answer the original question:

What is the minimum angle between the ground and the ladder
such that the ladder does not slip?



Suppose we add to this picture a woman of mass M
who has climbed up a distance d along the length
of the ladder. Now how do we write the moment
equation

∑
Mz = 0 ?

(A) FW L sin θ −mg L
2 cos θ + Mg d

2 cos θ = 0

(B) FW L sin θ −mg L
2 cos θ + Mg d

2 sin θ = 0

(C) FW L sin θ −mg L
2 cos θ + Mgd cos θ = 0

(D) FW L sin θ −mg L
2 cos θ + Mgd sin θ = 0

(E) FW L sin θ −mg L
2 cos θ −Mg d

2 cos θ = 0

(F) FW L sin θ −mg L
2 cos θ −Mg d

2 sin θ = 0

(G) FW L sin θ −mg L
2 cos θ −Mgd cos θ = 0

(H) FW L sin θ −mg L
2 cos θ −Mgd sin θ = 0

What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?



What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?

For a given θ, how far up can she climb before the ladder slips?



Here’s a trickier equilibrium problem:

What forces act on the beam?

What 3 equations can we write for the beam?



A tightly stretched “high wire” has length L = 50 m. It sags by
d = 1.0 m when a tightrope walker of mass M = 51 kg stands at
the center of the wire.

What is the tension in the wire?

Is it possible to increase the tension in the wire so that there is no
sag at all (i.e. so that d = 0)?

What happens to the tension as we make the sag smaller and
smaller?



Now suppose a 51 kg sign is suspended from a cable (but not at
the center), as shown below.

How would you find the tensions T1 and T2?

Once you know T1 and T2, what are the horizontal and vertical
forces exerted by the two supports on the cable?



How many equations does the “method of joints” allow us to write
down for this truss? (Consider how many joints the truss has.)

(A) 4 (B) 8 (C) 12 (D) 15



Physics 8 — Friday, November 1, 2019

I Turn in HW8. Pick up HW9 handout in back corner of room.

I This week, you read Ch2 (statics) and Ch3 (determinate
systems: equilibrium, trusses, arches) of Onouye/Kane. Next
week, you’ll skim Ch4 (load tracing) and read Ch5 (strength
of materials). Feel free to buy one of my $10 used copies if
you wish. At the end of the term, you can keep it, or sell it
back to me for $10.


