
Physics 8 — Monday, November 4, 2019

I I finally added summaries of key results from Onouye/Kane
ch1-ch7 to the “equation sheet.” I’m working on ch8, and I
may do ch9 as well (though ch9 will be XC for you).

I This week, you’ll skim Ch4 (load tracing) and read Ch5
(strength of materials) of Onouye/Kane. Feel free to buy one
of my $10 used copies if you wish. At the end of the term,
you can keep it, or sell it back to me for $10.

Let’s use forces and torques to analyze the big red
wheel that we first saw last Monday. The wheel
has rotational inertia I . The string is wrapped at
radius R, with an object of mass m dangling on the
string. For the dangling object, write

may =
∑

Fy

For the cylinder, write

Iα =
∑

τ



Let’s use forces and torques to
analyze the big red wheel that we
first saw last Monday. The wheel
has rotational inertia I .

The string is wrapped at radius
R, with an object of mass m
dangling on the string.

For the dangling object, write

may =
∑

Fy

For the cylinder, write

Iα =
∑

τ



After some math, I get

α =
mgR

Iwheel + mR2
≈ mgR

Iwheel

(The approximation is for the limit where the object falls at a� g ,
so the string tension is T = (mg −ma) ≈ mg .)



Why did increasing the dangling
mass m increase the wheel’s
rotational acceleration α ?

Why did increasing the radius R
from which the dangling mass
was suspended increase the
wheel’s rotational acceleration?

Why did sliding the big rotating
masses farther out on the
extended “arms” decrease the
wheel’s rotational acceleration?



Let’s go back and use torque to analyze another problem that last
week we were only able to analyze using energy conservation:
a cylinder rolling (without slipping) down an inclined plane.

What 3 forces act on the cylinder? What is the rotation axis?
Draw FBD and extended FBD. What are the torque(s) about this
axis? How are α and a related? Write ~F = m~a and τ = Iα.
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Remember that the object with the larger “shape factor”
I/(mR2) rolls downhill more slowly.



While we’re here, let’s revisit the “center-of-mass chalkline”
demonstration from a few weeks ago.

Now that we know about torque, we can see why the CoM always
winds up directly beneath the pivot, once we understand that the
line-of-action for gravity passes through the CoM.

We stopped after this.



Another equilibrium problem!

The top end of a ladder of inertia m rests against a smooth (i.e.
slippery) wall, and the bottom end rests on the ground. The
coefficient of static friction between the ground and the ladder is
µs . What is the minimum angle between the ground and the
ladder such that the ladder does not slip?

Let’s start by drawing an EFBD for the ladder.



Why must we say the
wall is slippery?

Is the slippery wall
more like a pin or a
roller support?

What plays the role
here that string tension
played in the previous
problem?

Does the combination
of two forces at the
bottom act more like a
pin or a roller support?

Which forces would an
engineer call “reaction”
forces?



Which choice of pivot axis will give us the simplest
equation for

∑
Mz = 0 ? (We’ll get an equation

involving only two forces if we choose this axis.)

(A) Use bottom of ladder as pivot axis.

(B) Use center of ladder as pivot axis.

(C) Use top of ladder as pivot axis.



How would I write
∑

Mz = 0 about the bottom
end of the ladder? (Take length of ladder to be L.)

(A) FW L cos θ + mgL sin θ = 0

(B) FW L cos θ + mg L
2 sin θ = 0

(C) FW L cos θ −mgL sin θ = 0

(D) FW L cos θ −mg L
2 sin θ = 0

(E) FW L sin θ + mgL cos θ = 0

(F) FW L sin θ + mg L
2 cos θ = 0

(G) FW L sin θ −mgL cos θ = 0

(H) FW L sin θ −mg L
2 cos θ = 0

What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?



What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?

Let’s answer the original question:

What is the minimum angle between the ground and the ladder
such that the ladder does not slip?



Suppose we add to this picture a woman of mass M
who has climbed up a distance d along the length
of the ladder. Now how do we write the moment
equation

∑
Mz = 0 ?

(A) FW L sin θ −mg L
2 cos θ + Mg d

2 cos θ = 0

(B) FW L sin θ −mg L
2 cos θ + Mg d

2 sin θ = 0

(C) FW L sin θ −mg L
2 cos θ + Mgd cos θ = 0

(D) FW L sin θ −mg L
2 cos θ + Mgd sin θ = 0

(E) FW L sin θ −mg L
2 cos θ −Mg d

2 cos θ = 0

(F) FW L sin θ −mg L
2 cos θ −Mg d

2 sin θ = 0

(G) FW L sin θ −mg L
2 cos θ −Mgd cos θ = 0

(H) FW L sin θ −mg L
2 cos θ −Mgd sin θ = 0

What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?



What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?

For a given θ, how far up can she climb before the ladder slips?



Here’s a trickier equilibrium problem:

What forces act on the beam?

What 3 equations can we write for the beam?



A tightly stretched “high wire” has length L = 50 m. It sags by
d = 1.0 m when a tightrope walker of mass M = 51 kg stands at
the center of the wire.

What is the tension in the wire?

Is it possible to increase the tension in the wire so that there is no
sag at all (i.e. so that d = 0)?

What happens to the tension as we make the sag smaller and
smaller?



Now suppose a 51 kg sign is suspended from a cable (but not at
the center), as shown below.

How would you find the tensions T1 and T2?

Once you know T1 and T2, what are the horizontal and vertical
forces exerted by the two supports on the cable?



How many equations does the “method of joints” allow us to write
down for this truss? (Consider how many joints the truss has.)

(A) 4 (B) 8 (C) 12 (D) 15



How many unknown internal forces (tensions or compressions) do
we need to determine when we “solve” this truss?

(A) 4 (B) 5 (C) 6 (D) 7



This is a “simply supported” truss. How many independent
“reaction forces” do the two supports exert on the truss? (If there
are independent horizontal and vertical components, count them as
separate forces.)

(A) 2 (B) 3 (C) 4 (D) 6



Notice that 8 = 5 + 3.

For a planar truss that is stable and that you can solve using the
equations of static equilibrium,

2Njoints = Nbars + 3

You get two force equations per joint. You need to solve for one
unknown tension/compression per bar plus three support
“reaction” forces.



What do we learn by writing∑
Fx = 0,

∑
Fy = 0,∑

Mz = 0 for the truss as a
whole? (Use joint A as pivot.)

(I write RAx , RAy , RCy for the
3 “reaction forces” exerted by
the supports on the truss.)

(A) RAy − 2 kN + RCy = 0,
RAx + 1 kN = 0,
−(2 kN)(2 m)− (1 kN)(2 m) + (RCy )(2 m) = 0

(B) RAy − 2 kN + RCy = 0,
RAx + 1 kN = 0,
−(2 kN)(2 m)− (1 kN)(1 m) + (RCy )(4 m) = 0

(C) RAy − 2 kN + RCy = 0,
RAx + 1 kN = 0,
−(2 kN)(2 m)− (1 kN)(2 m) + (RCy )(4 m) = 0



What two equations does the
“method of joints” let us write
for joint C ?

(Let the tension in member
i ↔ j be Tij . For compression
members, we will find Tij < 0.)

(A) TCD − TBC cos θ = 0
RCy − TBC sin θ = 0

(B) TCD − TBC sin θ = 0
RCy − TBC cos θ = 0

(C) TCD + TBC cos θ = 0
RCy + TBC sin θ = 0

(D) TCD + TBC sin θ = 0
RCy + TBC cos θ = 0



What two equations does the
“method of joints” let us write
for joint A ?

(Let the tension in member
i ↔ j be Tij . For compression
members, we will find Tij < 0.)

(A) RAx − TAD − TAB cos θ = 0
RAy − TAB sin θ = 0

(B) RAx − TAD − TAB sin θ = 0
RAy − TAB cos θ = 0

(C) RAx + TAD + TAB cos θ = 0
RAy + TAB sin θ = 0

(D) RAx + TAD + TAB sin θ = 0
RAy + TAB cos θ = 0



What two equations does the
“method of joints” let us write
for joint D ?

(Let the tension in member
i ↔ j be Tij . For compression
members, we will find Tij < 0.)

(A) −2 kN + TBD = 0 and −TAD + TCD = 0

(B) −2 kN + TBD = 0 and −TAD − TCD = 0

(C) −2 kN− TBD = 0 and −TAD + TCD = 0

(D) −2 kN− TBD = 0 and −TAD − TCD = 0



I named each member force Tij (for “tension”) and let Tij > 0
mean tension and Tij < 0 mean compression. Once you’ve solved
the truss, it’s best to draw the arrows with the correct signs for
clarity. (Next page.)



Forces redrawn with arrows in correct directions, now that we
know the sign of each force. Members AB and BC are in
compression. All other members are in tension.



Another option is to write down all 2J equations at once and to
type them into Mathematica, Maple, Wolfram Alpha, etc.

In[92] eq := {

RAx + TAB*cos + TAD == 0,

RAy + TAB*sin == 0,

-TAB*cos+TBC*cos+1 == 0,

-TBD-TAB*sin-TBC*sin == 0,

-TAD+TCD == 0,

-2 + TBD == 0,

-TCD - TBC*cos == 0,

RCy + TBC*sin == 0,

sin==1.0/Sqrt[5.0],

cos==2.0/Sqrt[5.0]

}

In[93] Solve[eq]

Out[93] {

RAx → -1.,

RAy → 0.75,

RCy → 1.25,

TAB → -1.67705,

TAD → 2.5,

TBC → -2.79508,

TBD → 2.,

TCD → 2.5,

cos → 0.894427,

sin → 0.447214

}
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