Physics 8 — Friday, November 15, 2019

» Turn in HW10. Pick up HW11 handout. HW11 is “due” next
Friday, but you can turn it in on Monday, Nov 25, just in case
it takes us an extra day to get through the material on beams.

» This week, you read Ch6 (cross-sectional properties) and Ch7

(simple beams). Next week, you'll read Ch8 (more details on
beams).



» The idea of computing centroids of simple and composite
shapes is very, very briefly introduced in O/K ch3 (in the
context of “distributed loads”), and is discussed in much more
detail in O/K ch6 (you read this week, for Monday).

> Let's go through one example using rectangles and triangles.
It will help you in cases when you need to solve for the
“reaction forces” on a beam that carries distributed loads.
(Example coming up next.)
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What is Xeentroia for the shaded area?
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What are the areas of the three individual polygons?
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(A) 36, 16, 16
(B) 36, 16, 12
(C) 36, 16, 8
(D) 36, 16, 6
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What are the Ycentroid values of the three individual polygons?
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(A) 4,9, 11
(B) 4,9, 11.667
(C) 4,9, 12
(D) 4,9, 12.333
(E) 4,9, 125
(F) 4,9, 13
(G) 4,9, 14
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What is Yeentroia for the whole shaded area?

(A) 4+9412
—3 =8.33
(B)
(4)(36) + (9)(16) + (12)(6) _ .
36 +16 +6 )
WS (C)
(4)(36) + (9)(16) + (12)(6) _
44+9+12 = 144
238567290 R H(D}p%
(42)(36) + (92)(16) + (122)(6) _ .,

36416+ 6



There was one problem similar to this (but using metric units) on
HW10: Determine the support reactions at A and B.
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ClearAll["Global +"];

loadlForce = 4000.0 pound;

loadlX = 6.0 foot; Measure positions w.r.t. support A;
load2Force = (500.0 pound / foot) # (12 foot)

6000. pound

Find centroid of distributed load, for equivalent concentrated load;
load2X = (6.0 + 2.0 + 12.0/2) foot

14. foot

Evaluate moments about pivot Aj;

Solve[0® == By (6.0 + 2.0 + 12.0) foot - loadlForce * loadlX -
load2Force » load2X, By]

{{By - 5400. pound} }

By = By /. First[%]

5400. pound

Solve[@ == Ay + By - loadlForce - load2Force, Ay]

{{Ay - 4600. pound} }

Solve[0 == Ax]
[{Ax = 0}}



This one is harder than your homework, because the distributed
load is non-uniform: Determine the support reactions at A and B.
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ClearAll["Global «"]3;

foot = Quantity[1.0, "foot"];

pound = Quantity[1.8, "pound"];

Rectangle for uniform lk/foot load spanning entire beam. ;
loadlX = 0.5 (6 foot + 12 foot)

9. ft

loadlForce = (1000 pound / foot) » (18.0 foot)

18000. 1b
Trianglular load that sits above uniform load.;
load2X = 18.0 foot - (12.0 foot) /3

14. ft

load2Force = 0.5 # (12.0 foot) = (2000 pound / foot)

12000. b

Moments about B;

L = 18.0 foot;

Solve|[

© = loadlForce * (L - load1X) + load2Force (L - load2X) -
Ay % (12 foot), Ay]

{{Ay » 17500. 1b}}

Ay = Ay /. First[%]

175600. 1b

Solve [0 = Ay + By - loadlForce - load2Force, By]

{{By » 12500. 1b}}



2.38 An inclined king-post truss supports a vertical and
horizontal force at C. Determine the support reactions de-
veloped at A and B.

This is not really a “truss problem,” since we're not asked to solve
for the internal forces in the truss, but it is an example of a pretty
tricky equilibrium problem.

Let's try working through this together in class. (I think it's
deviously tricky!)

Notice, from the given dimensions: the angle of the incline is the
same as the interior angle at joints A and B of the truss. Also
notice pin/hinge support at A and roller support at B.
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Each shape has the same area: 24 squares. Which shape has the
largest Iy = [ y?dA (“second moment of area about the x-axis"),
with y = 0 given by the faint horizontal red line at the center?



(A) (B) (©) (D)

Each shape has the same area: 24 squares. Which shape has the
smallest I, = [y?dA (‘“second moment of area about the
x-axis"), with y = 0 given by the faint horizontal red line at the

center?



If you moved the x-axis down by a couple of grid units, what would
happen to I, = fy2dA for each shape? Would I, change?
Would I change by the same amount for each shape?

(Think: “parallel-axis theorem.”)



(A) (B) (©) (D)

Given that I, = fysz = %bh3 for a rectangle centered at y = 0,
let's use the parallel-axis theorem to calculate /, for shapes A, B,
C, and D. For definiteness, let each graph-paper box be

1 ¢cm x 1 cm. So the units will be cm?.



Let's do the two rectangular shapes first, since they're quick.

Then, the trick for the non-rectangular shapes is to use (from O/K
§6.3) the “parallel-axis theorem:”

b= he+ > Ad>

where each sum is over the simple shapes that compose the big
shape.

> I is the simple shape's own [, value about its own centroid
(which is bh®/12 for a rectangle),
» A is the simple shape’s area, and

» d, is the vertical displacement of the simple shape’s centroid
from y = 0 (which should be the centroid of the big shape).
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Each shape has same area A = 24 cm?, but “second moment of
area” is I4 = 1328 cm?, Ig = 792 cm?, Ic = 72 cm*, Ip = 32 cm*.
That’s the motivation for the “I" shape of an I-beam: to get a
large “second moment of area,” | = fy2 dA. The deflection of a
beam under load is inversely proportional to /.
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We can use the Method of Sections to study the internal forces
and torques (“moments”) within a beam. Consider this cantilever
beam (whose own weight we neglect here) supporting a
concentrated “load” force P at the far end. The left half is what
holds up the right half. What force and torque (“moment”) does
the left half exert on the right half? Does the answer depend on
where we “section” the beam?
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We draw “load diagram” (basically a FBD for the beam), then the
“shear (V) diagram” below that, then the “moment (M) diagram”
below that. Sign conventions: V > 0 when beam LHS section is
pulling up on beam RHS; M > 0 when beam is smiling.
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We draw “load diagram” (basically a FBD for the beam), then the
“shear (V) diagram” below that, then the "moment (M) diagram”
below that. Sign conventions: V > 0 when beam LHS section is
pulling up on beam RHS; M > 0 when beam is smiling.
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Sign conventions: V > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.




Sign conventions: V' > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.
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Let's try a mirror image of the same cantilever beam. Sign
conventions: V > 0 when beam LHS section is pulling up on beam
RHS; M > 0 when beam is smiling.
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Sign conventions: V > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.
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Sign conventions: V > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.
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Physics 8 — Friday, November 15, 2019

» Turn in HW10. Pick up HW11 handout. HW11 is “due” next
Friday, but you can turn it in on Monday, Nov 25, just in case
it takes us an extra day to get through the material on beams.

» This week, you read Ch6 (cross-sectional properties) and Ch7

(simple beams). Next week, you'll read Ch8 (more details on
beams).



