
Physics 8 — Friday, November 15, 2019

I Turn in HW10. Pick up HW11 handout. HW11 is “due” next
Friday, but you can turn it in on Monday, Nov 25, just in case
it takes us an extra day to get through the material on beams.

I This week, you read Ch6 (cross-sectional properties) and Ch7
(simple beams). Next week, you’ll read Ch8 (more details on
beams).



I The idea of computing centroids of simple and composite
shapes is very, very briefly introduced in O/K ch3 (in the
context of “distributed loads”), and is discussed in much more
detail in O/K ch6 (you read this week, for Monday).

I Let’s go through one example using rectangles and triangles.
It will help you in cases when you need to solve for the
“reaction forces” on a beam that carries distributed loads.
(Example coming up next.)



What is Xcentroid for the shaded area?

(A) 0

(B) 3

(C) 6

(D) 9



What are the areas of the three individual polygons?

(A) 36, 16, 16

(B) 36, 16, 12

(C) 36, 16, 8

(D) 36, 16, 6



What are the Ycentroid values of the three individual polygons?

(A) 4, 9, 11

(B) 4, 9, 11.667

(C) 4, 9, 12

(D) 4, 9, 12.333

(E) 4, 9, 12.5

(F) 4, 9, 13

(G) 4, 9, 14



What is Ycentroid for the whole shaded area?

(A)
4 + 9 + 12

3
= 8.33

(B)

(4)(36) + (9)(16) + (12)(6)

36 + 16 + 6
= 6.21

(C)

(4)(36) + (9)(16) + (12)(6)

4 + 9 + 12
= 14.4

(D)

(42)(36) + (92)(16) + (122)(6)

36 + 16 + 6
= 47.2



There was one problem similar to this (but using metric units) on
HW10: Determine the support reactions at A and B.





This one is harder than your homework, because the distributed
load is non-uniform: Determine the support reactions at A and B.





This is not really a “truss problem,” since we’re not asked to solve
for the internal forces in the truss, but it is an example of a pretty
tricky equilibrium problem.

Let’s try working through this together in class. (I think it’s
deviously tricky!)

Notice, from the given dimensions: the angle of the incline is the
same as the interior angle at joints A and B of the truss. Also
notice pin/hinge support at A and roller support at B.











(A) (B) (C) (D)

Each shape has the same area: 24 squares. Which shape has the
largest Ix =

∫
y2dA (“second moment of area about the x-axis”),

with y = 0 given by the faint horizontal red line at the center?



(A) (B) (C) (D)

Each shape has the same area: 24 squares. Which shape has the
smallest Ix =

∫
y2dA (“second moment of area about the

x-axis”), with y = 0 given by the faint horizontal red line at the
center?



If you moved the x-axis down by a couple of grid units, what would
happen to Ix =

∫
y2dA for each shape? Would Ix change?

Would Ix change by the same amount for each shape?

(Think: “parallel-axis theorem.”)



(A) (B) (C) (D)

Given that Ix =
∫
y2dA = 1

12bh
3 for a rectangle centered at y = 0,

let’s use the parallel-axis theorem to calculate Ix for shapes A, B,
C , and D. For definiteness, let each graph-paper box be
1 cm× 1 cm. So the units will be cm4.



Let’s do the two rectangular shapes first, since they’re quick.

Then, the trick for the non-rectangular shapes is to use (from O/K
§6.3) the “parallel-axis theorem:”

Ix =
∑

Ixc +
∑

Ad2
y

where each sum is over the simple shapes that compose the big
shape.

I Ixc is the simple shape’s own Ix value about its own centroid
(which is bh3/12 for a rectangle),

I A is the simple shape’s area, and

I dy is the vertical displacement of the simple shape’s centroid
from y = 0 (which should be the centroid of the big shape).









(A) (B) (C) (D)

Each shape has same area A = 24 cm2, but “second moment of
area” is IA = 1328 cm4, IB = 792 cm4, IC = 72 cm4, ID = 32 cm4.
That’s the motivation for the “I” shape of an I-beam: to get a
large “second moment of area,” I =

∫
y2 dA. The deflection of a

beam under load is inversely proportional to I .





We can use the Method of Sections to study the internal forces
and torques (“moments”) within a beam. Consider this cantilever
beam (whose own weight we neglect here) supporting a
concentrated “load” force P at the far end. The left half is what
holds up the right half. What force and torque (“moment”) does
the left half exert on the right half? Does the answer depend on
where we “section” the beam?



We draw “load diagram” (basically a FBD for the beam), then the
“shear (V) diagram” below that, then the “moment (M) diagram”
below that. Sign conventions: V > 0 when beam LHS section is
pulling up on beam RHS; M > 0 when beam is smiling.
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Let’s try a mirror image of the same cantilever beam. Sign
conventions: V > 0 when beam LHS section is pulling up on beam
RHS; M > 0 when beam is smiling.
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