
▶ positron.hep.upenn.edu/p8/files/ws28.pdf

▶ Today: 2 problems, 3 XC, and a hands-on activity!, all
apropos oscillations. Also, in the last 15m of class, Ryan will
use a loud sound to shatter a wineglass (!).

▶ positron.hep.upenn.edu/p8/files/exam2023.pdf

▶ We’ll do exam at the whiteboard in my office (DRL 1W15):
http://www.hep.upenn.edu/~ashmansk/drl_1w15.jpg

▶ Last day to submit late work to Marija is Dec ??. Last day to
submit XC to Bill is Dec 23 — maybe later if you tell me that
you want to learn something interesting and write it up.

http://positron.hep.upenn.edu/p8/files/ws28.pdf
http://positron.hep.upenn.edu/p8/files/exam2023.pdf
http://www.hep.upenn.edu/~ashmansk/drl_1w15.jpg


I think this slide and the
next one could make a ter-
rific “design your own XC
problem” exercise. For
scale in this photo, the
nominal height of a CMU
masonry block is 8 inches.
So I think the height of the
I-beam is about 10 inches.
I would guess just under
6 inches for the width of
each flange.

You could turn this into an
amazing estimation prob-
lem using your knowledge
of beams, etc.





1. Hands-on activity! Ryan is going to cook up something fun
involving our two favorite examples of oscillating systems: the
pendulum; and the bob suspended from a spring.



2. A pendulum is swinging with period T = 1.0 s in a stationary
elevator. What happens to the period when the elevator
(a) accelerates upward at ay = +2.0 m/s2 ? (b) accelerates
downward at ay = −2.0 m/s2 ? (c) travels downward at constant
velocity vy = −5.0 m/s ? (d) travels downward and gradually
slows to a stop ( |ay | = 0.5 m/s2 — should it be positive or
negative)? The easiest way to analyze this problem is to notice
that when you are on an elevator, the constant “g” is effectively
replaced by a value that combines g with the vertical acceleration
— combines how? (Think of what happens when you are standing
on a bathroom scale while riding an elevator.)



3. (a) To form a pendulum, I put a 1.50 kg mass at the end of a
0.248 m long cable. If I give the pendulum a small kick and then
let it move back and forth freely, what is the period of oscillation?
(b) If I replace the 1.50 kg mass with a 15.0 kg mass, how does
this affect the period of oscillation? (c) If I wanted to make the
period of oscillation twice as large, how long would I have to make
the cable?



XC4*. A horizontal spring-block system made up of one block and
one spring has an oscillation frequency f = 1.5 Hz. A second
spring, identical to the first, is added to the system. (a) What is
the new oscillation frequency when the two springs are connected
as shown in figure a below? (b) What is the frequency when the
springs are arranged as in figure b below?



XC5*. A meter stick is free to pivot around a point located a
distance x below its top end, where 0 m < x < 0.5 m. (See figure
above.) (a) What is the frequency f of its oscillation if it moves as
a pendulum? (b) To what position should you move the pivot if
you want to minimize the period?



XC6*. You have a teardrop-shaped 2 kg object that is 0.28 m
long along its longest axis and has a hook at one end. When you
try to balance it on your fingers, you find it balances when your
fingers are 0.20 m from the hook end. Then you hang the object
by the hook and set it into simple harmonic motion. You find that
it oscillates 10 cycles in 13 s. What is its rotational inertia I?





We often write x(t) in terms of ω = “natural angular frequency:”

x = A cos(ωt+ϕi )

but we can equivalently used f = “natural frequency:”

x = A cos(2πf t + ϕi )

▶ f = frequency, measured in cycles/sec, or Hz (hertz)

▶ ω = f
2π is angular frequency, measured in radians/sec, or s−1

▶ The frequency f = 2πω is much more intuitive than ω

▶ Using ω keeps the equations cleaner — can be helpful for
derivations, etc., so that you don’t have to keep writing 2π



“angular velocity” ω is our old friend from studying circular motion:



“frequency” f = ω
2π is more

familiar from music, etc.
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Let’s return to our two favorite examples of oscillating systems.

Natural frequency & period for mass on spring:
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Natural frequency & period for simple pendulum (small heavy
object at end of “massless” cable):
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Oscillation: vinitial = 0, xinitial ̸= 0



Missing from previous picture: damping

▶ Without some kind of external push, a swingset eventually
slows to a stop, right? Eventually the mechanical energy is
dissipated by friction, air resistance, etc.

▶ A piano wire doesn’t vibrate forever, does it?

▶ Normally once you hit a key, the sound dies out after about
half a second or so.

▶ If your foot is on the sustain pedal, the sound lasts several
seconds.

▶ What is the difference?

▶ It’s the felt damper touching the strings!



Oscillation (damped, Q=10, f=1 Hz)



Oscillation (damped, Q=100, f=1 Hz)



Oscillation (damped, Q=100, f=1 Hz)



Damped, Q=100, f=1 Hz: energy vs time (in periods)



Damped, Q=1000, f=1 Hz: energy vs time (in periods)



For a given frequency f ,

▶ Less damping ↔ higher Q

▶ More damping ↔ lower Q

▶ Q = ωτ is number of radians after which energy has
decreased by a factor e−1 ≈ 0.37

▶ Equivalently, Q = 2πf τ is number of cycles after which
energy has decreased by a factor e−2π ≈ 0.002

▶ More simply, Q is roughly the number of periods after which
nearly all of the energy has been dissipated.

▶ “Tinny” sound of frying pan ↔ low Q (fast dissipation)

▶ Smooth, enduring sound of a gong, or a bell tower ↔ high Q
(slow dissipation)



Suppose you want to go for a long time on a swing set.

Dissipation is continuously removing energy.

If you’re going to keep going for many minutes, you need some
way of continuously putting energy back in.

If you’re a big kid, you swing your feet. If you’re a little kid, your
parent or older sibling pushes you.

The push of parent or swing of feet has to be at approximately the
natural frequency of the swingset, or else you don’t get anywhere!

But if your pushes are close to the right interval, the amplitude
gets larger and larger with each successive push, until eventually
the rate at which the push is adding energy equals the rate at
which dissipation is removing energy.

Hitting the right frequency is called resonance



The higher the Q (i.e. slower dissipation), the more periods you
have available for building up energy. A high Q makes it easy to
build up a really big amplitude!

But the higher the Q, the closer you have to get to the right
frequency in order to get the thing moving.



f0 = 1000 Hz, Q = 10: energy and phase vs. fpush



f0 = 1000 Hz, Q = 30: energy and phase vs. fpush



f0 = 1000 Hz, Q = 100: energy and phase vs. fpush



(avoiding) resonance in structures

https://99percentinvisible.org/episode/supertall-101/

https://99percentinvisible.org/episode/supertall-101/


(avoiding) resonance in structures


