
▶ Before third class meeting:

▶ first watch this video

▶ if you’d like more detail than the video provided, then skim
through Mazur chapter 3, focusing mainly on the concepts
half, and glossing over most equations

▶ if you’re content with the video, you can skip the chapter



Defining acceleration
▶ Last week, we defined velocity as the rate of change of

position with respect to time

vx =
dx

dt

(considering only the x component for now), and we learned
to identify vx visually as the slope on a graph of x(t)

▶ Moving at constant velocity is not very interesting! So we
need to be able to talk about changes in velocity.

▶ The rate of change of velocity with respect to time is called
acceleration:

ax =
dvx
dt

▶ While acceleration can also vary with time (!), there are many
situations in which constant acceleration (ax = constant)
gives a good description of the motion. We’ll see soon what
math lets us conclude, if we start with ax = constant.



At time t2 in the position-vs-time graph below, the object is

(A) not moving

(B) moving at
constant speed

(C) speeding up

(D) slowing down



At time t2 in the position-vs-time graph below, is vx (the x
component of velocity) is

(A) zero

(B) not changing

(C) increasing

(D) decreasing



The x component of acceleration in these two graphs is

(A) positive in (a), negative in (b)

(B) negative in (a), positive in (b)

(C) negative in both (a) and (b)

(D) positive in both (a) and (b)

(E) zero in both (a) and (b)



Accelerating under gravity’s influence
▶ One important situation in which constant acceleration

(ax = constant) gives a good description of the motion is
“free fall” near Earth’s surface.

▶ (Until Chapter 10, we will use only one axis in any given
problem, and we will call that axis x . So for free-fall problems,
for now, the x axis will be vertical, pointing upward.)

▶ Free fall is the motion of an object subject only to the
influence of gravity.
▶ Not being pushed or held by your hand or by the ground
▶ When air resistance is small enough to neglect

▶ Close to Earth’s surface, an object in free fall experiences a
constant acceleration, of magnitude |a⃗| = 9.8 m/s2 and
pointing in the downward direction.

▶ If we define the x axis to point upward (as we often will, for
free-fall problems before Ch10), then ax = −9.8 m/s2.

▶ Since we see the quantity 9.8 m/s2 so often, we give it a
name: g = 9.8 m/s2. Then ax = −g .



(Checkpoint 3.7)

Let’s pause here to go through Checkpoint 3.7 together.

▶ Does the speed of a falling object (A) increase or (B)
decrease?

▶ If the positive x axis points up, does vx (A) increase or (B)
decrease as the object falls?

▶ is the x component of the acceleration (A) positive or (B)
negative?

Pause to think for a moment, then we’ll compare answers. To aid
your thinking, you may want to graph vx(t), for a falling object –
where we define the x axis to point upward.



Let’s do what Galileo could only imagine doing!

▶ Let’s see if different objects really do fall with the same
acceleration

ax = −g

if we are able to remove the effects of air resistance.



Equations we can derive from ax = constant
▶ You don’t need to know how to do these derivations, but

if you like calculus, you might enjoy seeing where these
often-used results come from.

▶ We defined ax = dvx
dt and vx = dx

dt , without worrying so far
about whether or not ax is changing with time.

▶ Integrating the first equation
(
dvx
dt = ax

)
over time,

vx(t) = vx ,i +

∫ t

0
ax dt

▶ If ax = constant, then this integral becomes easy to do:

vx(t) = vx ,i + ax t

▶ We can also integrate the equation
(
dx
dt = vx

)
over time:

x(t) = xi +

∫ t

0
vx dt

keeping in mind that vx (unlike ax) is changing with time



Equations we can derive from ax = constant

vx(t) = vx ,i + ax t

x(t) = xi +

∫ t

0
vx dt

▶ Plugging our vx(t) result into the second integal:

x(t) = xi +

∫ t

0
(vxi + ax t) dt

x(t) = xi + vx ,i t +
1

2
ax t

2



Equations we can derive from ax = constant
▶ That’s all there is to it. Just writing down the assumption

that ax is constant allows us to integrate twice to get two
results that you will use many times:

vx ,f = vx ,i + ax t

xf = xi + vx ,i t +
1

2
ax t

2

▶ If you plug one of these equations into the other, you can
eliminate t to get one more very useful result

v2x ,f = v2x ,i + 2ax (xf − xi )

▶ This last one is helpful e.g. to know how fast the dropped
steel ball is traveling at the instant before it hits the ground.

▶ My point is that these equations are just the result of taking
ax = constant and doing some math.



Inclined planes

▶ Falling to the ground at ax = −g happens so quickly that it
can be difficult to see exactly what is happening.

▶ Maybe there is a way to “fall” in slow motion?

▶ Yes! We can slide down a hill.

|g | → |g sin θ|

(We’ll see in Chapter 10 why it’s sin θ here. Don’t worry.)

▶ To get the ± sign right, you have to choose which direction to
draw the x axis. Eric chooses the x axis to point downhill

ax = +g sin θ

▶ Let’s look at the inclined air track and figure out which way
it defines the x axis to point . . . .

▶ We’ll see that the x axis points downhill, and the point on the
top of the ramp is called x = 0.



Which of the following shows the expected shapes of x(t) [blue]
and vx(t) [red] if I release the cart (at rest) from x = 0?

A

C

B

D



Which of the following shows the expected shapes of x(t) [blue]
and vx(t) [red] if I shove the cart upward starting from x = +2 m?

A

C

B

D



I shove the cart uphill and watch it travel up and back. We define
the x axis to point downhill. At the top of its trajectory (where it
turns around), vx is

(A) positive

(B) negative

(C) zero

(D) infinite

(E) undefined



I shove the cart uphill and watch it travel up and back. We define
the x axis to point downhill. At the top of its trajectory (where it
turns around), ax is

(A) positive

(B) negative

(C) zero

(D) infinite

(E) undefined



Which of the following shows the expected shapes of x(t) [blue]
and vx(t) [red] if I shove the cart gently downward from x = 0 m?

A

C

B

D



In a past year, someone asked an excellent question
after class about the difference, in the previous
slide, between scenario (A) and scenario (C). Let’s
ponder that.



What are the expected shapes of x(t) [blue] and vx(t) [red] for a
basketball tossed upward, when the x axis points upward?

A

C

B

D



Basketball tossed upward

What are the values of vx and ax at the top of the basketball’s
trajectory (assuming that the x axis points upward)?

(A) vx < 0, ax = −9.8 m/s2

(B) vx < 0, ax = 0

(C) vx = 0, ax = −9.8 m/s2

(D) vx = 0, ax = 0

(E) vx = 0, ax is undefined



Ball thrown downward

If you stand up high and release an object with a downward shove,
in the absence of air resistance, the motion (after release, but
before hitting the ground) is best described by

(A) vx < 0, ax = −9.8 m/s2

(B) vx < 0, ax = 0

(C) vx = 0, ax = −9.8 m/s2

(D) vx = 0, ax = 0

(E) vx = 0, ax is undefined

(Where we’ve defined the x axis to point upward here.)



I’m going to drop the basketball from a few meters in the air, and
I’ll let it bounce twice before I catch it. Try for yourself to draw a
graph of vx(t) (velocity) and a graph of ax(t) (acceleration),
spanning the time from release to catch. Let the x axis point
upward. Don’t worry about labeling the axes with numerical
values, but do be clear about positive vs. zero vs. negative values.
You will repeat a similar exercise in class with your group.



Reminder

velocity is rate of change of position: vx =
dx
dt

acceleration is rate of change of velocity: ax =
dvx
dt

If acceleration is constant, then: (write these on board)

vx ,f = vx ,i + ax t

xf = xi + vx ,i t +
1

2
ax t

2

v2x ,f = v2x ,i + 2ax (xf − xi )

Important cases for which ax is constant:

free fall: ax = −g inclined plane: ax = +g sin θ
(x axis points up) (x axis points downhill)



Q: If I stand h = 20m above the ground and release a steel ball
from rest, how long does it take to reach the ground? (Hint: to
avoid using a calculator, you can approximate g ≈ 10 m/s2.)

(A) 2.0 s

(B) 1.5 s

(C) 1.0 s

(D) 0.50 s

(E) 0.25 s

xf = xi + vx ,i t +
1

2
ax t

2

0 = h + 0− 1

2
gt2



Q: If I stand 20 m above the ground and release a steel ball from
rest, what is its velocity at the instant just before it reaches the
ground? (Use g = 10 m/s2 to simplify math.)

(A) 10 m/s, pointing downward

(B) 15 m/s, pointing downward

(C) 20 m/s, pointing downward

(D) 40 m/s, pointing downward

(E) 40 m/s, pointing upward

If you already solved for t in the previous question then:

vx ,f = vx ,i + ax t

vx ,f = 0− gt

Or if you don’t already know t then:

v2x ,f = v2x ,i + 2ax (xf − xi )

v2x ,f = 02 + 2(−g) (0− h)



A box is at the lower end of a frictionless ramp of length L = 10 m
that makes a nonzero angle θ = 30◦ with the horizontal. A worker
wants to give the box a shove so that it just reaches the top of the
ramp. How fast must the box be going immediately after the shove
(assumed to be instantaneous) for it to reach its goal? Remember
sin 30◦ = 1

2 and use g ≈ 10 m/s2 to keep the math simple.

(A) 1.0 m/s

(B) 5.0 m/s

(C) 7.0 m/s

(D) 10 m/s

(E) 20 m/s

Reminder (on board): results derived from ax = constant .



A box is at the lower end of a frictionless ramp of length L = 10 m
that makes a nonzero angle θ = 30◦ with the horizontal. A worker
wants to give the box a shove so that it just reaches the top of the
ramp. She shoves the box, as we worked out on the previous page:
the box’s initial speed is 10 m/s. (Again, use g ≈ 10 m/s2 to keep
the math simple.)

What is the box’s speed when it is halfway up the ramp?

(A) 1.0 m/s

(B) 5.0 m/s

(C) 7.1 m/s

(D) 10.0 m/s

(E) 20.0 m/s



Another trick: Wolfram Alpha knows the quadratic formula



Potential sources of confusion from today’s reading (Chapter 3)
▶ Inclined planes are new to many people.
▶ How do you draw a motion diagram?
▶ Don’t follow Eric’s reasoning about what is happening (vx ,

ax) at the very top of the motion for a ball tossed upward.
▶ Some of the mathy parts at the end are hard to follow.
▶ For checkpoint 3.6, you have to stare at Figure 3.6b for a

while before you see that, since the points are all equal steps
in time, the quantity being graphed is proportional to vx , the
x component of velocity.



A variation on a worksheet problem

A rock dropped from the top of a building travels 21.5 m in the
last second before it hits the ground. Assume that air resistance is
negligible. (The worksheet will probably ask, “How tall is the
building?”) Which of the following statements is true? (Let x-axis
point upward.)

(A) The rock’s average velocity vx ,av during the last 1.0 s of its
fall is −21.5 m/s.

(B) The rock’s instantaneous velocity vx one second before it hits
the ground is −21.5 m/s.

(C) The rock’s instantaneous velocity vx at the instant just before
it hits the ground is −21.5 m/s.

(D) Statements (A), (B), (C) are all true.

(E) Statements (A), (B), (C) are all false.



A rock dropped from the top of a building travels 21.5 m in the
last second before it hits the ground. Assume that air resistance is
negligible. (Worksheet will probably ask, “How tall is the
building?”) At the instant just before hitting the ground, the
rock’s speed is

(A) 21.5 m/s

(B) −21.5 m/s

(C) Somewhat faster than 21.5 m/s

(D) Somewhat slower than 21.5 m/s

(E) We don’t have enough information to decide.



A rock dropped from the top of a building travels 21.5 m in the
last second before it hits the ground. Assume that air resistance is
negligible. (Worksheet will probably ask, “How tall is the
building?”) Let the building height be h. Let the total time the
rock falls be t. Which is a true statement about the problem?

(A) h − 1
2gt

2 = 0

(B) 0− gt = −21.5 m/s

(C) h − 1
2g [t − 1.0 s]2 = 21.5 m

(D) 0− g [t − 1.0 s] = −21.5 m/s

(E) (A) and (B) are both true.

(F) (A) and (C) are both true.

(G) (A), (B), (C), and (D) are all true.

(H) (A), (B), (C), and (D) are all false.
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