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video segment break

I begin video preceding ws01

I Watch this video before first day of class.



Welcome!

I Web page: http://positron.hep.upenn.edu/physics8

I Note that this course is offered every other year! So Phys 008
will next be offered in fall 2023. (Remind your friends.)

I Physics 8 covers a pretty similar set of topics to other
introductory college physics courses, such as Phys 101 (for
premeds), Phys 150 (for engineers), Phys 170 (for physics
majors). What makes it Physics for Architects?
I About half of you are ARCH students. Having your own course

lets us tailor it to your interests and your backgrounds.
I Once we’ve covered the basics, we’ll spend several weeks

applying what we’ve learned to study topics related to
architectural structures: trusses, cables, beams, etc. Fun!

I Most of you are “visual learners.” Lots of lecture
demonstrations make the physics concepts memorable.

I You’re used to working together. So we encourage a lot of
cooperation and discussion in this course.

I We know how much time you spend on your studio projects.
So we do our best to keep this course low-stress for you.

http://positron.hep.upenn.edu/physics8


Physics can give us new insights into the everyday world. We
should go through this video a second time at end of semester.

https://www.youtube.com/watch?v=XfZFuw7a13E

https://www.youtube.com/watch?v=XfZFuw7a13E


https://www.youtube.com/watch?v=XfZFuw7a13E&t=35

I 0:35 — impulse

I 0:43 — rotational inertia, torque

I 0:51 — torque, periodic motion, velocity, projectile motion

I 2:53 — friction, circular motion, projectile motion (173 s)

I 3:30 — center of mass (210 s)

I 6:18 — friction, “normal force” (378 s)

https://www.youtube.com/watch?v=XfZFuw7a13E&t=378

https://www.youtube.com/watch?v=XfZFuw7a13E&t=35
https://www.youtube.com/watch?v=XfZFuw7a13E&t=378


I For a long time, architects have been designing structures to
span spaces. Is physics relevant to this pursuit?

I Let’s make a model of a bridge. (Physics often uses models
to simplify problems into a form you can analyze more easily.)



I The two supports are spring scales that read kilograms. The
“bridge deck” is an 8 kg wooden plank.



I The two supports are spring scales that read kilograms. The
“bridge deck” is an 8 kg wooden plank.

I If I use the two scales to support the plank symmetrically, as
shown, from its very ends, what will each scale read?

I (For now, you and your neighbor should discuss, and use your
intuition to “guess.” As we study forces and torques in
Sep/Oct, we’ll draw diagrams to analyze more formally.)

(A) Both scales will read 8 kg

(B) Both scales will read 4 kg

(C) The left scale will read more than the right scale

(D) The left scale will read less than the right scale



I The “bridge deck” is an 8 kg wooden plank.

I Now one support stays at the far left, but the right support
moves left, so that 1/4 of the plank hangs over the R end.

I What will the left and right scales read now?

(A) 4 kg (L) and 4 kg (R)

(B) (2/3)(8 kg)=5.33 kg (L) and (1/3)(8 kg)=2.67 kg (R)

(C) (1/3)(8 kg)=2.67 kg (L) and (2/3)(8 kg)=5.33 kg (R)

(D) (3/4)(8 kg)=6 kg (L) and (1/4)(8 kg)=2 kg (R)

(E) (1/4)(8 kg)=2 kg (L) and (3/4)(8 kg)=6 kg (R)

(F) 3 kg (L) and 6 kg (R)



I The “bridge deck” is an 8 kg wooden plank.

I Now one support stays at the far left, but the right support
moves left, so that 1/2 of the plank hangs over the R end.

I What will the left and right scales read now?



By the way, these two scales report values in kilograms. What does
a spring-based scale (like this one) really measure, anyway?

(A) mass

(B) weight

(C) inertia

(D) What’s the difference?



I All materials deform (change shape) when you push or pull on
them. In November, we’ll study how the beams (or joists)
beneath a floor bend in response to the “load” (the downward
push) imposed by e.g. heavy furniture in the middle of the
floor. (Illustrate with ruler.)

I The scale measures how far an internal metal spring bends in
response to an object’s pushing down on the scale’s platform.

I Usually(*) that downward push exerted by the object on the
scale is equal to the downward pull that Earth’s gravity exerts
on the object. We call that downward pull of gravity the
object’s weight. Weight is usually measured in Newtons (a
unit of force), while mass is usually measured in kilograms.

I (*) Assuming that the object and scale are not accelerating.

I But weight is proportional to mass. The constant of
proportionality is smaller on the Moon than it is on Earth.

I By the way, inertia is the same thing as mass. It measures an
object’s tendency to resist being accelerated.

I After a few weeks, this vocabulary will feel much more familar.





To keep me from falling, the required force between my
hands and the rope is . . .

(A) The same for both methods: equal to mg (m = my mass)

(B) The same for both methods: equal to 2mg

(C) Twice as much for 1st method (2mg vs. mg)

(D) Twice as much for 2nd method (2mg vs. mg)



Kansas City Hyatt Regency skywalk collapse

For more like this, read To Engineer is Human by Henry Petroski.



As designed, each of the two skywalks hangs onto the rope with its
own hands. As built, the lower skywalk’s hands are effectively
hanging onto the upper skywalk’s feet! So the upper skywalk’s grip
on the rope feels 2× larger force than in original design. Oops!



Look! A real use for drawing force diagrams!

The author uses the symbol P for a “point” force (or point load),
as is the custom in engineering. When you see “P” here, pretend it
says “F ” or “mg” instead.

We’ll learn in September how to draw “free-body diagrams” as a
graphical method to analyze forces (and then later, torques).



Upper skywalk loses its grip on the “rope”





Instructor: Bill Ashmanskas (me)

ashmansk@hep.upenn.edu office: DRL 1W15
tel. 215-746-8210 mobile: (write on board)
Stop in any time my door is open, or email to set up a time.

I teach physics & electronics here in the Physics Dept., and I
design electronics for research projects in both the Radiology and
the Physics departments. My design work usually involves writing
computer code, but sometimes I use CAD software for Printed
Circuit Board design

I grew up in the Boston suburbs, where my dad (a carpenter /
framing contractor) built wood-frame houses. Working for him one
summer taught me a lot about what holds our homes up! So it felt
like destiny that I should teach Physics for Architects.



Course format

I We’ll typically have textbook reading / video watching due on
Mondays and Wednesdays. That lets us make better use of
our classroom time.

I In-class problem-solving should be fun and cooperative. We’re
here to help you — and your classmates are too.

I Update this!



Why are you here?
I If you’re here just to take a college physics course, that’s

great. Here are my terms: You put in a consistent 10 hours
each week (total) on reading, homework, and in-class work;
and I’ll do my best to make Physics 8 fun, informative, and
stress-free for you.

I You may be here because Physics 8/9 is required for the
Intensive Major program in architecture at Penn.

I . . . or because eventually, to be certified as a practicing
architect, you will take exams covering structures, heating/
cooling systems, plumbing, electrical systems, acoustics, etc.

I . . . or because making a detailed energy model of a building
depends on the physics of heat and light.

I But I think more generally you’re here because many of you
will someday design things that will exist, will be seen, and
will function in the physical world that surrounds us. A better
understanding of the physical world will make you a better
designer. And if you work with engineers on designs, you can
ask better questions if you all speak the same language.



(why you’re here . . .)

I So in the fall term we’ll focus on mechanics, which should
prepare you well for the Structures course that many of you
will take as seniors.

I While learning (or re-learning) Newton’s laws of motion, you’ll
exercise the mathematical side of your brain.

I By the way, how many of you took a physics course in high
school? (A) Yes, (B) No.

I How many of you studied enough calculus to be comfortable
with the idea of a derivative (e.g. dx/dt) as a “rate of
change?” (A) Yes, (B) No.

I Prof. Farley, who teaches Structures (ARCH 435/436) here,
tells me that he wants students to enter his course with a
solid understanding of forces, torques, vectors, and
trigonometry. A key goal of Physics 8 is to leave you well
prepared for his course.



Class meeting format . . .

I Spend a moment thinking of something that you are good at:
something you do well enough that you really enjoy the time
you spend working on it.

I Now turn to your neighbor and share your ideas on these
things you’re really good at.

I Ask your neighbor how he or she learned that favorite skill.



Class meeting format . . .

I Ask your neighbor how he or she learned that favorite skill.
I How many of you said . . .

(A) By doing it / practicing?
(B) By working with other people who share that interest?
(C) By reading?
(D) By asking questions after trying it yourself?
(E) . . . other methods? . . .

I How many of you learned to do what you do best by
Listening to lectures?



Class meeting format . . .

I I want you to learn as much as possible from the time we
spend together in class.

I So I plan to make the class meetings as interactive as
possible, so that you are actively thinking about, discussing,
and doing physics during class time, rather than passively
watching me write equations on the blackboard.

I So normally I won’t “lecture” very much. Instead, you’ll do
reading the night before and come to class prepared. In class,
I’ll summarize the key ideas, and we’ll spend much of the hour
working on them together.

I As with a coach, a trainer, a piano teacher, etc., I’ll provide as
much guidance as I can, but I can’t do the learning for you.

I Now let’s look at the course web page:
http://positron.hep.upenn.edu/physics8

http://positron.hep.upenn.edu/physics8


Online response forms
After skimming Chapter 1 and reading Chapter 2, go to
http://positron.hep.upenn.edu/wja/jitt/

http://positron.hep.upenn.edu/wja/jitt/


Click “sign in.” Enter ID number. Click “email new PIN.”



Click “sign in.” Enter ID number. Click “email new PIN.”



Your PIN should arrive by email.



Now log in. If you click “remember on this computer,” then you
don’t have to bother logging back in next time.



You should see yourself signed in now. Click on today’s assignment.



Fill out the form and then click “submit.”



Fill out the form and then click “submit.”



This should generate an email to me, CC to you. If you have any
trouble, just email your answers to ashmansk@hep.upenn.edu

I do this so that the reading-response emails are automatically
formatted in a way that is easy for me to process and search.



You decide to add to your hirise design a rooftop swimming pool,
big enough for people to swim laps for exercise. Make an
order-of-magnitude estimate of the mass of the water contained in
the pool. First guess by pure intuition, then try multiplying out
some plausible numbers. [What size cube of water has a mass of a
metric tonne?]

(A) 103 kg (1 tonne)

(B) 104 kg (10 tonnes)

(C) 105 kg (102 tonnes)

(D) 106 kg (103 tonnes)

(E) 107 kg (104 tonnes)

(F) 108 kg (105 tonnes)



Here’s my estimate

Useful trick: google understands units!

OK, what weight in pounds corresponds to this mass in kilograms?



Another trick: google can convert units!































I Course web page is at
http://positron.hep.upenn.edu/physics8

I The reading for the first segment of the course is on Canvas.
I’ll explain later how to purchase or borrow a copy of the
textbook for the second segment of the course.

I To do before next class meeting:

I Skim Chapter 1 during the long weekend.

I Watch video then skim Chapter 2 before our 2nd class
meeting.

I Remember to fill out online response forms for both reading
assignments at http://positron.hep.upenn.edu/q008 .
(This is linked from Canvas and from course web page, so you
don’t need to write it down.)

I PDFs of these slides and other handouts can be found at
http://positron.hep.upenn.edu/physics8/files

http://positron.hep.upenn.edu/physics8
http://positron.hep.upenn.edu/q008
http://positron.hep.upenn.edu/physics8/files


video segment break

I begin video preceding ws02

I Before second day of class:

I first quickly skim through Mazur chapter 1

I then watch this video (which covers chapter 2)

I then skim through Mazur chapter 2



Physics 8 — Friday, August 30, 2019

I Course www: http://positron.hep.upenn.edu/physics8

I You will skim Mazur Chapter 2 (“motion in one dimension”)
for today.

I Today’s assignment will be first to watch this lecture, then to
skim Chapter 2.

http://positron.hep.upenn.edu/physics8


Vectors

I A vector has both a magnitude and a spatial direction, e.g.
up, north, east, etc.

I The position ~r is a vector (x , y , z) pointing from the origin
(0, 0, 0) to the object’s location in space. ~r indicates where
the object is with respect to x = 0, y = 0, z = 0.

I You may be familiar with vectors written as triplets (x , y , z),
or with arrows, ~r = (x , y , z).

I The components of this vector are
rx = x (the x component),
ry = y (the y component), and
rz = z (the z component).

I The magnitude of vector ~r is |~r | = r =
√

x2 + y 2 + z2

(but we won’t see that until Chapter 10).

I But for the first 9 chapters, we will deal only with the x axis.
Once we reach chapter 10, we’ll use x and y axes together.
So no

√
x2 + y 2 until then.



I What is the distance (in blocks) between DRL and Addams?
I If you walk in a straight line that starts at DRL and ends at

Addams, what is your distance traveled (in blocks)?
I What is your displacement (expressed using blocks and a

compass direction)?
I If you start at Addams and end at DRL, what is your

displacement?
I What is your distance traveled in that case?
I If you start at Addams, walk to Meyerson, walk back to

Addams, then walk to DRL (ending there), what is your
displacement?

I What is your distance traveled?



I What is (roughly) the distance between SF and DC?
I If you start in SF and end in DC, what is your displacement?
I Which one is a vector?
I How does the distance between SF and DC relate to the

displacement from SF to DC?
I How does the distance between SF and DC relate to the

displacement from DC to SF?
I For a journey on which I go in a straight line, never changing

direction, how are “distance” and “distance traveled” related?
I For a journey on which I do change direction several times,

how can I figure out the distance traveled?



Position, displacement, etc.

I A vector has both a magnitude and a spatial direction, e.g.
up, north, east, etc.

I The position ~r is a vector (x , y , z) pointing from the origin
(0, 0, 0) to the object’s location in space. ~r indicates where
the object is with respect to x = 0, y = 0, z = 0.

I If an object moves from some initial position ~ri to some final
position ~rf , we say its displacement (vector) is ∆~r = ~rf −~ri ,
pointing from its initial position ~ri to its final position ~rf .

I The x component of the displacement is xf − xi .

I The distance (scalar) between ~ri and ~rf is
d = |∆~r | = |~rf −~ri |. In one dimension, d = |xf − xi |.

I We’ll be reminded in Chapter 10 that in two dimensions,
d =

√
(xf − xi )2 + (yf − yi )2. For now we use 1D.



Position, displacement, etc.

I The distance (scalar) between ~ri and ~rf is
d = |∆~r | = |~rf −~ri |. In one dimension, d = |xf − xi |.

I If the object does not change direction between ~ri and ~rf ,
then the distance traveled is the same as d .

I If the object changes direction at (for example) points a,b,c
along the way, then the distance traveled is

dtraveled = |~ra −~ri |+ |~rb −~ra|+ |~rc −~rb|+ |~rf −~rc |

I In one dimension, the distanced traveled for this case (turning
at three points a,b,c) would be

dtraveled = |xa − xi |+ |xb − xa|+ |xc − xb|+ |xf − xc |



I If someone asks you how to get from DRL to 30th Street
Station, is it sufficient to say (without pointing), “Go 5
blocks?”

I Is it good enough to say, “Go 2 blocks, then go another 3
blocks?”

I What about “Go 2 blocks north, then go 3 blocks east?”

I Once again, for the first 9 chapters of the textbook, directions
will be either north/south OR east/west OR up/down, but
we will not (until Chapter 10) work with more than one axis
in a given problem.

I (Also, somewhat confusingly, for the first 9 chapters, the one
axis that we do work with will always be called the x axis,
even if it does not point in a direction that you are
accustomed to associating wth the x axis.)

I So we won’t worry, until Chapter 10, about things like the
fact that a bird could travel from DRL to 30th Street Station
along a diagonal that is

√
13 blocks long.



For next few questions

(I’ll copy this to the board.)

(A) +5 meters

(B) +6 meters

(C) +8 meters

(D) −6 meters

(E) −8 meters



What is the distance traveled from t=0 to t=3s?



What is the x component of displacement?



Now what is the x component of displacement?



Now what is the distance traveled?



To keep the math simple, let’s pretend that every city block is
exactly 100 meters long.

I If I bike directly from DRL to Addams in 100 seconds, what is
my average speed?

I What is my average velocity?

I If I walk directly from DRL to Addams in 200 seconds, then
bike directly back from Addams to DRL in 100 seconds, what
is my average velocity for the journey?

I What is my average speed for the journey?



I What is the relationship between (instantaneous) speed and
(instantaneous) velocity?

I What does calculus say about the relationship between speed
and distance traveled? (Does one of them equal the rate of
change of the other?)

I What does calculus say about the relationship between
displacement and velocity? (Does one of them equal the rate
of change of the other?)



Velocity and speed

I Velocity (a vector) is the rate of change of position with
respect to time: ~v = d~r

dt = (vx , vy , vz) = (dx
dt ,

dy
dt ,

dz
dt )

I speed v = |~v | is magnitude (scalar) of velocity (vector)

I In one dimension, speed is v = |vx |, i.e. the absolute value of
the x-component of velocity.

I We can talk about velocity at a given instant. Over a finite
time interval, we can talk about the average velocity during
the time from ti to tf .

~vav =
∆~r

tf − ti
vx ,av =

xf − xi
tf − ti

I The average speed during the finite time interval from ti to
tf is the (distance traveled) divided by the (time interval)

vav =
dtraveled

tf − ti



Example 2.9 (modified)
frame # x (m) t (s)

1 +1.0 0
2 +1.5 0.33
3 +2.2 0.67
4 +2.8 1.00
5 +3.4 1.33
6 +3.8 1.67
7 +4.4 2.00
8 +4.8 2.33
9 +4.8 2.67

10 +4.8 3.00
11 +4.8 3.33
12 +4.8 3.67
13 +4.6 4.00
14 +4.4 4.33
15 +4.2 4.67
16 +4.0 5.00
17 +3.8 5.33
18 +3.6 5.67
19 +3.4 6.00

Consider Eric’s motion between frames 13 and
19 in textbook Figure 2.1. Let’s use the values
in Table 2.1 to answer to these questions:

(a) What is his average speed over this time
interval?

(b) What is the x component of his average
velocity over this time interval?

(c) Write the average velocity (during this
time interval) in terms of the unit vector î .



Drawing position (or displacement) vs. time

Which statement best describes the
motion depicted by this graph?

(A) I walk 1.0 m/s forward for 10 s.
Then I rest 10 s. Then I walk
1.0 m/s backward for 10 s.

(B) I walk 0.5 m/s forward for 10 s.
Then I rest 10 s. Then I walk
1.0 m/s forward for 10 s.

(C) I walk 0.5 m/s forward for 10 s.
Then I rest 10 s. Then I walk
0.5 m/s forward for 10 s.

(D) I walk 1.0 m/s forward for 10 s.
Then I rest 10 s. Then I walk
0.5 m/s forward for 10 s.



Average velocity
What is my average velocity ~vav during the 30 second interval
shown on this graph? (Remember that î is the unit vector pointing
forward along the x axis, i.e. pointing in the direction in which x
increases.)

(A) +1.0 m/s î

(B) +0.75 m/s î

(C) +0.5 m/s î

(D) −0.25 m/s î



Instantaneous velocity

What is my instantaneous velocity ~v at time t = 5 s? What is ~v at
time t = 15 s?

(A) +1.0 m/s î and
0 m/s î , respectively

(B) +0.5 m/s î and
+1.0 m/s î , respectively

(C) +1.0 m/s î and
+0.5 m/s î , respectively

(D) +0.5 m/s î and
+0.5 m/s î , respectively



Slope of the x(t) curve

The slope of the curve in the x coordinate of position vs. time
graph (graph of x(t) vs. t) for an object’s motion gives

(A) the object’s speed

(B) the object’s acceleration

(C) the object’s average velocity

(D) the x component of the object’s instantaneous velocity

(E) not covered in today’s material



You walk 1.2 km (1200 m) due east from home to a restaurant in
20 min (1200 s), stay there for an hour (3600 s), and then walk
back home, taking another 20 min. What is your average speed
for the trip?

(A) vav = 0.0 m/s

(B) vav = 0.4 m/s

(C) vav = 0.8 m/s

(D) vav = 1.0 m/s

(E) vav = 2.0 m/s



You walk 1.2 km (1200 m) due east from home to a restaurant in
20 min (1200 s), stay there for an hour (3600 s), and then walk
back home, taking another 20 min. What is your average velocity
for the trip?

(A) ~vav = ~0

(B) ~vav = +0.4 m/s east

(C) ~vav = +0.8 m/s east

(D) ~vav = −0.4 m/s east

(E) ~vav = −0.8 m/s east



You drive an old car on a straight, level highway at 20 m/s for
20 km, and then the car stalls. You leave the car and, continuing
in the direction in which you were driving, walk to a friend’s house
4 km away, arriving 1000 s after you began walking. What is your
average speed during the whole trip?

(A) vav = 10 m/s

(B) vav = 12 m/s

(C) vav = 15 m/s

(D) vav = 20 m/s

(E) vav = 24 m/s



I Where is the object moving forward?

I Where is the object moving backward?

I Where does the speed equal zero?

I Where is the speed largest?

I Where is vx (the x component of velocity) largest?



For the motion represented in the figure above, what is the
object’s average velocity between t = 0 and t = 1.0 s?

What is its average speed during this same time interval?

Why is the average speed, for this motion, different from the
magnitude of the average velocity?



Physics 8 — Wednesday, September 4, 2019

I Course www: http://positron.hep.upenn.edu/physics8

I Why are we talking about velocity and acceleration, when
architectural structures generally do not move? Answer: to
understand force and torque, we need first to discuss motion.

http://positron.hep.upenn.edu/physics8


Unit vectors (yuck)
I We can define unit vectors in the x , y , and z directions:

î = (1, 0, 0), ĵ = (0, 1, 0), and k̂ = (0, 0, 1).

I Then we can write ~r = (x , y , z) = x î + y ĵ + zk̂ .

I It’s often convenient to define a coordinate system where the
x-axis points east, the y-axis points north, and the z-axis
points up, with the origin at some specified location (e.g. the
center of the ground floor).

I Then if I’m standing 5 meters east of the origin, my position
vector is +5m î , which we could also write as (+5m, 0, 0).

I If I’m 3 m west of the origin, then ~r = −3m î = (−3m, 0, 0).

I If I’m 2 m north of the origin, then my position is
~r = +2m ĵ = (0,+2m, 0).

I Most students dislike Mazur’s unit-vector notation, so I try to
avoid using it. I will instead write, “The displacement is +5
meters eastward.” I will usually use a word like “east” or
“north” or “up” to avoid writing î or other unit vectors.



Vectors

I Vectors are very useful on a 2D map ((x , y) or geocode) or in
a 3D CAD model (x , y , z).

I For the first 10 chapters of our textbook, all problems will be
one-dimensional (we will use the x-axis only), which makes
the use of vectors seem contrived at this stage.

I The reason for doing this is so that we can focus on the
physics first before reviewing too much math.

I In one dimension, position is ~r = (x , 0, 0) = x î .

I The x component of vector ~v is vx , and in one dimension
~v = (vx , 0, 0) = vx î .

I The x component of vector ~r is x . (Special case notation.)

I In 1D, magnitude of ~r is |x |, and magnitude of ~v is |vx |.
I Vectors will seem more natural starting in Chapter 10, when

we study motion in a two-dimensional plane.



I position: where is it located in space? ~r = (x , y , z)

I displacement: where is it w.r.t. some earlier position?

I ∆~r = (∆x ,∆y ,∆z) = ∆x î + ∆y ĵ + ∆zk̂

I position and displacement are both vectors: they have both a
direction in space and a magnitude

I distance is a scalar (magnitude only, never negative)

I unit vectors î = (1, 0, 0), ĵ = (0, 1, 0), k̂ = (0, 0, 1)
are vectors pointing along x,y,z axes, with “unit” magnitude
(length = 1). Until Chapter 10, we use only the x-axis. So î
is the only unit vector introduced in Chapter 2.

I average velocity ~vav = ∆~r
∆t : (displacement) / (time interval)

x-component of ~vav is vx ,av = ∆x
∆t

I (instantaneous) velocity ~v = d~r
dt = (dx

dt ,
dy
dt ,

dz
dt )

x-component of ~v is vx = dx
dt

I velocity is a vector (it has a direction in space),
speed is a scalar (it has only a magnitude)

I For many people, the hardest part of this reading was getting
used to the author’s notation.



Let’s start by asking how your neighbor’s answer to the first
reading question compares with your own:

I What is a vector, and what is it good for?

I By the way, what are two examples of vectors that are focal
points of chapter 2? (See what your neighbor says.)

I Here’s what one of you wrote:

“A vector quantity, unlike a scalar quantity, is one that not only
has a magnitude but also a direction. An example of an important
vector quantity is displacement — unlike distance, displacement
takes into account the direction that something has travelled in
(i.e. while someone may have run a 400 m distance on a track,
their displacement would be 0 since they end up back where they
started.)”

By the way: clear and complete answers make me very happy.



Potential sources of confusion from Chapter 2

I It takes a while to get used to the textbook’s vector notation.
Some people positively hate the book’s notation!
I But the book’s notation is extremely self-consistent, even if

the many subscripts and superscripts can be annoying.
I And this book is excellent on the concepts.

I Also, it might take some practice to re-acclimate your brain to
reading lots of equations, if it has been several years since
your last math course. No worries.

I What is a unit vector? Yuck!

I Using only a single spatial dimension (until Chapter 10) makes
the discussion of vectors seem contrived.

I Distinction between displacement & position vectors.

I Difference between average and instantaneous velocity.

I Anything to add to this list?

Now — onward to chapter 3 . . .



video segment break

I begin video preceding ws03

I Before third class meeting:

I first watch this video

I then skim through Mazur chapter 3, focusing mainly on the
concepts half, and glossing over most equations



Defining acceleration
I Last week, we defined velocity as the rate of change of

position with respect to time

vx =
dx

dt

(considering only the x component for now), and we learned
to identify vx visually as the slope on a graph of x(t)

I Moving at constant velocity is not very interesting! So we
need to be able to talk about changes in velocity.

I The rate of change of velocity with respect to time is called
acceleration:

ax =
dvx
dt

I While acceleration can also vary with time (!), there are many
situations in which constant acceleration (ax = constant)
gives a good description of the motion. We’ll see soon what
math lets us conclude, if we start with ax = constant.



At time t2 in the position-vs-time graph below, the object is

(A) not moving

(B) moving at
constant speed

(C) speeding up

(D) slowing down



At time t2 in the position-vs-time graph below, is vx (the x
component of velocity) is

(A) zero

(B) not changing

(C) increasing

(D) decreasing



The x component of acceleration in these two graphs is

(A) positive in (a), negative in (b)

(B) negative in (a), positive in (b)

(C) negative in both (a) and (b)

(D) positive in both (a) and (b)

(E) zero in both (a) and (b)



Accelerating under gravity’s influence
I One important situation in which constant acceleration

(ax = constant) gives a good description of the motion is
“free fall” near Earth’s surface.

I (Until Chapter 10, we will use only one axis in any given
problem, and we will call that axis x . So for free-fall problems,
for now, the x axis will be vertical, pointing upward.)

I Free fall is the motion of an object subject only to the
influence of gravity.
I Not being pushed or held by your hand or by the ground
I When air resistance is small enough to neglect

I Close to Earth’s surface, an object in free fall experiences a
constant acceleration, of magnitude |~a| = 9.8 m/s2 and
pointing in the downward direction.

I If we define the x axis to point upward (as we often will, for
free-fall problems before Ch10), then ax = −9.8 m/s2.

I Since we see the quantity 9.8 m/s2 so often, we give it a
name: g = 9.8 m/s2. Then ax = −g .



(Checkpoint 3.7)

Let’s pause here to go through Checkpoint 3.7 together.

I Does the speed of a falling object (A) increase or (B)
decrease?

I If the positive x axis points up, does vx (A) increase or (B)
decrease as the object falls?

I is the x component of the acceleration (A) positive or (B)
negative?

Discuss with your neighbor for a moment, and then we’ll compare
answers.

You and your neighbor might even want to graph vx(t), for a
falling object, while you discuss.



Let’s do what Galileo could only imagine doing!

I Let’s see if different objects really do fall with the same
acceleration

ax = −g

if we are able to remove the effects of air resistance.



Equations we can derive from ax = constant
I You don’t need to know how to do these derivations, but

if you like calculus, you might enjoy seeing where these
often-used results come from.

I We defined ax = dvx
dt and vx = dx

dt , without worrying so far
about whether or not ax is changing with time.

I Integrating the first equation
(

dvx
dt = ax

)
over time,

vx(t) = vx ,i +

∫ t

0
ax dt

I If ax = constant, then this integral becomes easy to do:

vx(t) = vx ,i + ax t

I We can also integrate the equation
(

dx
dt = vx

)
over time:

x(t) = xi +

∫ t

0
vx dt

keeping in mind that vx (unlike ax) is changing with time



Equations we can derive from ax = constant

vx(t) = vx ,i + ax t

x(t) = xi +

∫ t

0
vx dt

I Plugging our vx(t) result into the second integal:

x(t) = xi +

∫ t

0
(vxi + ax t) dt

x(t) = xi + vx ,i t +
1

2
ax t2



Equations we can derive from ax = constant
I That’s all there is to it. Just writing down the assumption

that ax is constant allows us to integrate twice to get two
results that you will use many times:

vx ,f = vx ,i + ax t

xf = xi + vx ,i t +
1

2
ax t2

I If you plug one of these equations into the other, you can
eliminate t to get one more very useful result

v 2
x ,f = v 2

x ,i + 2ax (xf − xi )

I This last one is helpful e.g. to know how fast the dropped
steel ball is traveling at the instant before it hits the ground.

I My point is that these equations are just the result of taking
ax = constant and doing some math.



Inclined planes

I Falling to the ground at ax = −g happens so quickly that it
can be difficult to see exactly what is happening.

I Maybe there is a way to “fall” in slow motion?

I Yes! We can slide down a hill.

|g | → |g sin θ|

(We’ll see in Chapter 10 why it’s sin θ here. Don’t worry.)

I To get the ± sign right, you have to choose which direction to
draw the x axis. Eric chooses the x axis to point downhill

ax = +g sin θ

I Let’s look at this contraption and figure out which way it
defines the x axis to point



Inclined air track

I It looks as if the x axis points downhill, and the point on the
top of the ramp is called x = 0.



Which of the following shows the expected shapes of x(t) [blue]
and vx(t) [red] if I release the cart (at rest) from x = 0?

A

C

B

D



Which of the following shows the expected shapes of x(t) [blue]
and vx(t) [red] if I shove the cart upward starting from x = +2 m?

A

C

B

D



I shove the cart uphill and watch it travel up and back. We define
the x axis to point downhill. At the top of its trajectory (where it
turns around), vx is

(A) positive

(B) negative

(C) zero

(D) infinite

(E) undefined



I shove the cart uphill and watch it travel up and back. We define
the x axis to point downhill. At the top of its trajectory (where it
turns around), ax is

(A) positive

(B) negative

(C) zero

(D) infinite

(E) undefined



Which of the following shows the expected shapes of x(t) [blue]
and vx(t) [red] if I shove the cart gently downward from x = 0 m?

A

C

B

D



In a past year, someone asked an excellent question
after class about the difference, in the previous
slide, between scenario (A) and scenario (C). Let’s
ponder that.



Physics 8 — Friday, September 6, 2019

I Course www: http://positron.hep.upenn.edu/physics8

http://positron.hep.upenn.edu/physics8


What are the expected shapes of x(t) [blue] and vx(t) [red] for a
basketball tossed upward, when the x axis points upward?

A

C

B

D



Basketball tossed upward

What are the values of vx and ax at the top of the basketball’s
trajectory (assuming that the x axis points upward)?

(A) vx < 0, ax = −9.8 m/s2

(B) vx < 0, ax = 0

(C) vx = 0, ax = −9.8 m/s2

(D) vx = 0, ax = 0

(E) vx = 0, ax is undefined



Ball thrown downward

If you stand up high and release an object with a downward shove,
in the absence of air resistance, the motion (after release, but
before hitting the ground) is best described by

(A) vx < 0, ax = −9.8 m/s2

(B) vx < 0, ax = 0

(C) vx = 0, ax = −9.8 m/s2

(D) vx = 0, ax = 0

(E) vx = 0, ax is undefined

(Where we’ve defined the x axis to point upward here.)



I’m going to drop the basketball from a few meters in the air, and
I’ll let it bounce twice before I catch it. Working with one or two
people next to you, draw a graph of vx(t) (velocity) and a graph of
ax(t) (acceleration), spanning the time from release to catch. Let
the x axis point upward. Don’t worry about labeling the axes with
numerical values, but do be clear about positive vs. zero vs.
negative values.

Put your name(s) on your sheet of paper (one, two, or three
people per sheet — whatever you prefer) and turn it in at the end
of class. I’ll give you credit for showing up and making the effort,
not so much for correctness.

There will be a couple of other things for you to work out together
in class today, so you’ll probably need a full sheet of paper.



Reminder

velocity is rate of change of position: vx = dx
dt

acceleration is rate of change of velocity: ax = dvx
dt

If acceleration is constant, then: (write these on board)

vx ,f = vx ,i + ax t

xf = xi + vx ,i t +
1

2
ax t2

v 2
x ,f = v 2

x ,i + 2ax (xf − xi )

Important cases for which ax is constant:

free fall: ax = −g inclined plane: ax = +g sin θ
(x axis points up) (x axis points downhill)



Q: If I stand h = 20m above the ground and release a steel ball
from rest, how long does it take to reach the ground? (Hint: to
avoid using a calculator, you can approximate g ≈ 10 m/s2.)

(A) 2.0 s

(B) 1.5 s

(C) 1.0 s

(D) 0.50 s

(E) 0.25 s

xf = xi + vx ,i t +
1

2
ax t2

0 = h + 0− 1

2
gt2



Q: If I stand 20 m above the ground and release a steel ball from
rest, what is its velocity at the instant just before it reaches the
ground? (Use g = 10 m/s2 to simplify math.)

(A) 10 m/s, pointing downward

(B) 15 m/s, pointing downward

(C) 20 m/s, pointing downward

(D) 40 m/s, pointing downward

(E) 40 m/s, pointing upward

If you already solved for t in the previous question then:

vx ,f = vx ,i + ax t

vx ,f = 0− gt

Or if you don’t already know t then:

v 2
x ,f = v 2

x ,i + 2ax (xf − xi )

v 2
x ,f = 02 + 2(−g) (0− h)



Work on this together with 1 or 2 nearby people!

A box is at the lower end of a frictionless ramp of length L = 10 m
that makes a nonzero angle θ = 30◦ with the horizontal. A worker
wants to give the box a shove so that it just reaches the top of the
ramp. How fast must the box be going immediately after the shove
(assumed to be instantaneous) for it to reach its goal? Remember
sin 30◦ = 1

2 and use g ≈ 10 m/s2 to keep the math simple.

(A) 1.0 m/s

(B) 5.0 m/s

(C) 7.0 m/s

(D) 10 m/s

(E) 20 m/s

Put your group’s name(s) on the sheet of paper you work this out
on, and turn it in at the end for “in class” credit.

Reminder (on board): results derived from ax = constant .



Work on this together with 1 or 2 neighbors!

A box is at the lower end of a frictionless ramp of length L = 10 m
that makes a nonzero angle θ = 30◦ with the horizontal. A worker
wants to give the box a shove so that it just reaches the top of the
ramp. She shoves the box, as we worked out on the previous page:
the box’s initial speed is 10 m/s. (Again, use g ≈ 10 m/s2 to keep
the math simple.)

What is the box’s speed when it is halfway up the ramp?

(A) 1.0 m/s

(B) 5.0 m/s

(C) 7.1 m/s

(D) 10.0 m/s

(E) 20.0 m/s



Another trick: Wolfram Alpha knows the quadratic formula



Potential sources of confusion from today’s reading (Chapter 3)
I Inclined planes are new to many people.
I How do you draw a motion diagram?
I Don’t follow Eric’s reasoning about what is happening (vx ,

ax) at the very top of the motion for a ball tossed upward.
I Some of the mathy parts at the end are hard to follow.
I For checkpoint 3.6, you have to stare at Figure 3.6b for a

while before you see that, since the points are all equal steps
in time, the quantity being graphed is proportional to vx , the
x component of velocity.



video segment break

I begin video preceding ws04

I This time, actually read Mazur chapter 4, then come back to
watch this video. Try to do the checkpoints, but you can gloss
over most of the equations.



Physics 8 — Monday, September 9, 2019

I Course www: http://positron.hep.upenn.edu/physics8

I Question: momentum is what times what?

http://positron.hep.upenn.edu/physics8


Chapter 4: momentum

I An object’s momentum is ~p = m~v px = mvx
I m is for “mass” a.k.a. “inertia.” Mass plays two roles in

physics: how strongly an object is attracted by gravity, and
how difficult it is to change an object’s velocity. We say
“inertia” for now to focus on this latter aspect of mass.
Inertia equals mass.

I Momentum is conserved: it can be transferred between
interacting objects, but it cannot be created or destroyed.

I If the objects within a system have no interactions with the
outside world (“isolated system”), then the momentum of
that system is constant (cannot change).

I Imagine how it feels to throw a very heavy ball.

I Now imagine that you are standing on a sheet of ice!

I The difference is the impulse you get from the interaction
between your shoes and the non-slippery floor.



For two carts colliding on a frictionless track, I can define “the

system” to include just the two carts. Then ∆~psystem = ~0

because the system is isolated (i.e. interactions with the outside
are negligible).

Here are 7 different ways of saying the exact same thing:

∆~p1 + ∆~p2 = ~0 (isolated system)

~p1i + ~p2i = ~p1f + ~p2f

p1x ,i + p2x ,i = p1x ,f + p2x ,f

m1 ∆v1x + m2 ∆v2x = 0

m1v1x ,i + m2v2x ,i = m1v1x ,f + m2v2x ,f

m1 ∆v1x + m2 ∆v2x = 0
∆v1x

∆v2x
= −m2

m1

The boxed equation is most useful for problem solving. The last
equation is most useful for visual observation of collisions.



(For an isolated system of two objects)

m1v1x ,i + m2v2x ,i = m1v1x ,f + m2v2x ,f

∆v1x

∆v2x
= −m2

m1

Let’s watch the collision between a cart of mass m and a cart of
mass 3m that you considered after last Tuesday night’s reading.

Then let’s watch the case where m1 = m2.



What are the expected shapes of v1,x(t) [blue] and v2,x(t) [red]
when m2 = m1, and initially cart 1 is moving to the right and
cart 2 is stationary?

A

C

B

D



What are the expected shapes of v1,x(t) [blue] and v2,x(t) [red]
when m2 = m1, and initially cart 1 is moving to the right and
cart 2 is moving to the left?

A

C

B

D



What are the expected shapes of v1,x(t) [blue] and v2,x(t) [red]
when m2 = 2m1, and initially cart 1 is moving to the right and
cart 2 is stationary?

A

C

B

D



By the way: how would this graph look if we were to graph
momentum instead of velocity for each cart? (This graph shows
velocities. Graph on next page will show momenta.)

(. . . when m2 = 2m1, and initially cart 1 is moving to the right and cart 2

is stationary?)



Let’s look at momentum px instead of velocity vx :

(. . . when m2 = 2m1, and initially cart 1 is moving to the right and cart 2

is stationary?)



What are the expected shapes of v1,x(t) [blue] and v2,x(t) [red]
when m2 = 2m1, and initially cart 1 is stationary and cart 2 is
moving to the left?

A

C

B

D



What are the expected shapes of v1,x(t) [blue] and v2,x(t) [red]
when m2 = 2m1, and initially cart 1 is moving to the right and
cart 2 is moving to the left?

A

C

B

D



Which has more momentum —
a 0.50 kg baseball pitched at 40 m/s or
a 0.010 kg bullet fired at 400 m/s?

(A) Magnitude of baseball’s momentum is larger.

(B) Magnitude of bullet’s momentum is larger.

(C) The two momenta are equal in magnitude.



The speed of a bullet can be measured by firing it at a wooden
cart initially at rest and measuring the speed of the cart with the
bullet embedded in it. The figure shows a 0.0100 kg bullet fired at
a 4.00 kg cart. After the collision, the cart rolls at 2.00 m/s. What
is the bullet’s speed before it strikes the cart? (Once you write
down the right expression, the math works out pretty easily
without a calculator.)

(A) 4.00 m/s

(B) 798 m/s

(C) 800 m/s

(D) 802 m/s



An old exam problem started like this . . .

You have been hired to check the technical correctness of an
upcoming made-for-TV murder mystery. The mystery takes place
in the space shuttle. In one scene, an astronaut’s safety line is
sabotaged while she is on a space walk, so she is no longer
connected to the space shuttle. She checks and finds that her
thruster pack has also been damaged and no longer works. She is
200 meters from the shuttle and moving with it. That is, she is not
moving with respect to the shuttle. There she is — drifting in
space — with only 4 minutes of air remaining. To get back to the
shuttle, she decides to unstrap her 10 kg tool kit and . . .

What do you think the rest of the problem says she does with her
10 kg tool kit?

(Segue: low-tech carts rolling on track.)



Physics 8 — Wednesday, September 11, 2019

I Course www: http://positron.hep.upenn.edu/physics8

I Next week, you will read Ch7 (interactions) [for Monday] and
Ch8 (force) [for Wednesday]. Ch6 and Ch7 take some time to
read, but they don’t add many new equations (“quantitative
results”) to learn how to work with. Ch5 (energy) and Ch8
(force) will get more class time than Ch6 and Ch7. So there is
really one substantive chapter this week and one next week.

I We are going pretty quickly through the early chapters of the
textbook. We will slow down for the more difficult topics in
Ch10,11,12. The faster pace now lets us make time for the
fun applications to structures later. You’ll be glad we did.

http://positron.hep.upenn.edu/physics8


Q about chapter 4: “extensive” quantities

I A quantity Q describing a system is extensive if when you
divide up the system into two parts,

Q(part1) + Q(part2) = Q(combined)

I Typical examples are volume, money, mass, number of atoms

I Some counterexamples (not extensive) are humidity, density,
color, temperature.

I Some (just a few) extensive quantities are conserved,
meaning they can be transferred but can never be created or
destroyed. Momentum and energy are examples of
conserved quantities in physics.

I All conserved quantities are extensive, but only a few
extensive quantities are conserved.



Is number of dots an extensive quantity?

(A) Yes.

(B) No.



Is dot diameter an extensive quantity?

(A) No.

(B) Yes.



Is total area covered by dots an extensive quantity?

(A) No.

(B) Yes.

(C) Yes, as long as the dots can’t overlap.



This may help you with HW2 #11(d)
(The issue is what non-negligible friction would look like on a
velocity-vs-time graph.)
The velocity-vs-time graph below shows the motion of two
different objects moving across a horizontal surface. Could the
change in velocity with time be attributed to friction in each case?

(a) Yes for the top curve, no
for the bottom curve.

(b) No for the top curve, yes
for the bottom curve.

(c) Yes for both curves.

(d) No for both curves.

(e) I have no idea how friction
would affect a
velocity-vs-time graph!



Here once again are the key results from Chapter 4 (momentum):

Momentum ~p = m~v . Constant for isolated system: no external

pushes or pulls (next week we’ll say “forces”). Conservation of
momentum in isolated two-body collision implies

m1v1x ,i + m2v2x ,i = m1v1x ,f + m2v2x ,f

which then implies (for isolated system, two-body collision)

∆v1x

∆v2x
= −m2

m1

If system is not isolated, then we cannot write ~pf − ~pi = 0.
Instead, we give the momentum imbalance caused by the external
influence a name (“impulse”) and a symbol ( ~J ). Then we can
write ~pf − ~pi = ~J. You will rarely use ~J, other than to consider
whether or not it is nonzero.

Do you remember the key results from Ch 3 (acceleration)?



video segment break

I begin video preceding ws05

I This time, first read Mazur chapter 5, then come back to
watch this video. Try do do the checkpoints, but you can
gloss over most of the equations.

Checkpoint 5.13 typo (in PDF: printed book is good)

Most of this answer is fine, but when he writes, “Yes” at the
beginning, he really means to write, “No.” (Even Harvard
professors make mistakes once in a while!)



Chapter 5: Energy

What is the expression for the kinetic energy of an object of mass
m that is moving at speed v ?

(Assume the object is not rotating — we’ll deal with that later.)



Kinetic energy

K =
1

2
mv 2

I is the energy of motion.

I is unchanged (in total) in an elastic collision.

e.g.
1

2
m1v 2

1i +
1

2
m2v 2

2i =
1

2
m1v 2

1f +
1

2
m2v 2

2f

but it’s much easier in practice to write (equivalently)

|v12,i | = |v12,f |

i.e. relative speed is the same before and after an elastic collision

(v1x ,f − v2x ,f ) = −(v1x ,i − v2x ,i ) [Eqn. 5.4]

What are 4 types of collision? What distinguishes them?



Types of collisions
I Elastic collision: objects recoil with same relative speed as

before they collided. Kinetic energy Ki = Kf .

(v1x ,f − v2x ,f ) = −(v1x ,i − v2x ,i ) [Eqn. 5.4]

I Totally inelastic collision: objects stick together.

(v1x ,f − v2x ,f ) = 0

I Inelastic collision: objects recoil, but with a reduction in
relative speed

(v1x ,f − v2x ,f ) = −e(v1x ,i − v2x ,i ) with 0 < e < 1

I Explosive separation: imagine T.I.C. movie played in reverse.

(v1x ,i − v2x ,i ) = 0

(v1x ,f − v2x ,f ) 6= 0

Q (tricky): what value of e describes an explosive separation?!



If I play in reverse a movie of an elastic collision, what sort of
collision would I appear to see?

(a) elastic

(b) inelastic

(c) totally inelastic

(d) explosive separation

(e) it depends!



When we collide (on a low-friction track) two carts whose masses
and initial velocities are known, conservation of momentum allows
us to write

m1v1x ,i + m2v2x ,i = m1v1x ,f + m2v2x ,f

We have one equation, but two unknowns. Knowing something
about energy gives us a second equation. Relative speed = key.

I elastic: (v1x ,f − v2x ,f ) = −(v1x ,i − v2x ,i )

I totally inelastic: (v1x ,f − v2x ,f ) = 0

I if e is given: (v1x ,f − v2x ,f ) = −e(v1x ,i − v2x ,i )

I if change in internal energy is given:

1

2
m1v 2

1i +
1

2
m2v 2

2i =
1

2
m1v 2

1f +
1

2
m2v 2

2f + ∆Einternal

(or equivalently)

K1i + K2i + Ei ,internal = K1f + K2f + Ef ,internal

(We’ll work some HW-like examples on Friday or Monday.)



What sort of collision is illustrated by this velocity-vs-time graph?

(A) elastic

(B) inelastic

(C) totally inelastic

(D) explosive separation

(E) can’t tell from given
information

(By the way, can you infer the ratio of masses?)



What sort of collision is illustrated by this velocity-vs-time graph?

(A) elastic

(B) inelastic

(C) totally inelastic

(D) explosive separation

(E) can’t tell from given
information

(By the way, can you infer the ratio of masses?)



Suppose you find an isolated system in which two objects about to
collide have equal and opposite momenta. If the collision is totally
inelastic, what can you say about the motion after the collision?

(Discuss with your neighbor, and then I’ll call on a few people to
see what you think. If some of us disagree on the answer, it’s not a
problem: we will all learn by discussing.)



Imagine making two springy devices, each made up of a dozen or
so metal blocks loosely connected by springs, and then colliding
the two head-on. Do you expect the collision to be elastic,
inelastic, or totally inelastic? (Think about what happens to the
kinetic energy.)

(A) elastic

(B) inelastic

(C) totally inelastic

http://youtu.be/SJIKCmg2Uzg

http://youtu.be/SJIKCmg2Uzg


Physics 8 — Friday, September 13, 2019



“Newton’s cradle:” what do you expect to happen if I pull back
two of the spheres and release them?

What do you expect to happen if I put a piece of play dough
between two of the spheres?



Newton’s cradle (slow motion video from my smartphone)

https://youtu.be/rrrs81pl_DU

https://youtu.be/rrrs81pl_DU


If all three collisions in the figure shown here are totally inelastic,
which bring(s) the car on the left to a halt?

(A) I

(B) II

(C) II,III

(D) all three

(E) III



Which of these systems are isolated?

(1) While slipping on ice, a car collides totally inelastically with
another car. System: both cars (ignore friction)

(2) Same situation as in (a). System: slipping car

(3) A single car slips on a patch of ice. System: car

(4) A car brakes to a stop on a road. System: car

(5) A ball drops to Earth. System: ball

(6) A billiard ball collides elastically with another billiard ball on a
pool table. System: both balls (ignore friction)

(A) (1) only

(B) (6) only

(C) (1) + (2) + (3) + (4) + (5)+ (6)

(D) (1) + (2) + (3) + (4) + (6)

(E) (1) + (3) + (6)



We’ve now spent a week watching two carts collide on low-friction
tracks. Conservation of momentum lets us write one equation:

m1v1x ,i + m2v2x ,i = m1v1x ,f + m2v2x ,f

Often we know both initial velocities, but we don’t know either of
the two unknown final velocities. So we have two unknowns.
Energy adds a second equation, which usually involves relative
speed |v1x − v2x | of the two carts.

I elastic: (v1x ,f − v2x ,f ) = −(v1x ,i − v2x ,i )

I totally inelastic: (v1x ,f − v2x ,f ) = 0

I if e is given: (v1x ,f − v2x ,f ) = −e(v1x ,i − v2x ,i )

I if change in internal energy is given:

K1i + K2i + Ei ,internal = K1f + K2f + Ef ,internal

Let’s try using these results.



Write this up with your neighbor(s) and turn it in at the end of
class. If you miss class today or if you forget to hand it in on your
way out, you can scan & email it to me later if you wish.
Remember that in-class work like this is re-scaled so that 80% gets
full credit at the end of the term, so missing a couple is OK.

Two carts, of inertias (masses) m1 = 1.0 kg and m2 = 1.0 kg,
collide head-on on a low-friction track. Before the collision, which
is elastic, cart 1 is moving to the right at 1.0 m/s and cart 2 is at
rest. What are the two carts’ final velocities?



(Keep writing with your neighbor(s).)

Two carts, of inertias m1 = 1.0 kg and m2 = 9.0 kg , collide
head-on on a low-friction track. Before the collision, which is
elastic, cart 1 is moving to the right at 1.0 m/s and cart 2 is at
rest. What are the two carts’ final velocities?



Digression: notice what happens if I change the 1:9 ratio of masses
into a 1:14 ratio, as in HW2 problem 12 (which you only needed to
sketch, not solve with equations).



(Keep writing with your neighbor(s).)

Two carts, of inertias m1 = 1.0 kg and m2 = 9.0 kg, collide
head-on on a low-friction track. Before the collision, which is
totally inelastic, cart 1 is moving to the right at 1.0 m/s and
cart 2 is at rest. What are the two carts’ final velocities?



(Keep writing with your neighbor(s).)

Two carts, of inertias m1 = 1.0 kg and m2 = 1.0 kg, collide
head-on on a low-friction track. Before the collision, cart 1 is
moving to the right at 2.0 m/s and cart 2 is moving to the left at
2.0 m/s. After the collision, cart 1 is moving to the left at 1.0 m/s
and cart 2 is moving to the right at 1.0 m/s.

Let “the system” be cart 1 + cart 2. With the given values, is the
system’s total momentum the same before and after the collision?

What is the coefficient of restitution, e, for this collision?

Initial and final momentum are both zero, as you can verify. The
relative speed of the two objects is reduced by a factor e = 0.5.



Physics 8 — Monday, September 16, 2019

I You read Ch7 (interactions) for today and you’ll read Ch8
(force) for Wednesday. [Then we can finally start using
Newton’s three laws, as we will for the rest of the semester!]

A system consists of two 1.00 kg carts attached to each other by a
compressed spring. Initially, the system is at rest on a low-friction
track. When the spring is released, internal energy that was
initially stored in the spring is converted into kinetic energy of the
carts. The change in the spring’s internal energy during the
separation is 4.00 joules. What are the two carts’ final velocities?



A system consists of two 1.00 kg carts attached to each other by a
compressed spring. Initially, the system is at rest on a low-friction
track. When the spring is released, internal energy that was
initially stored in the spring is converted into kinetic energy of the
carts. The change in the spring’s internal energy during the
separation is 4.00 joules. What are the two carts’ final velocities?



HW3 problem 10

A system consists of a 2.00 kg cart and a 1.00 kg cart attached to
each other by a compressed spring. Initially, the system is at rest
on a low-friction track. When the spring is released, an explosive
separation occurs at the expense of the internal energy of the
compressed spring. If the decrease in the spring’s internal energy
during the separation is 10.0 J, what is the speed of each cart right
after the separation?

Since the two-cart system is isolated, what equation can we write
down?

Since the spring’s internal energy is converted into the carts’
kinetic energies, we can account for the initial and final energies of
the cart + spring + cart system and can see that this system is
closed. (No energy goes in or out of the system.) What second
equation can we write down?



(This one can be done without writing down much at all.)

Two carts, of inertias m1 = 1.0 kg and m2 = 1.0 kg, collide
head-on on a low-friction track. Before the collision, cart 1 is
moving to the right at 2.0 m/s and cart 2 is moving to the left at
2.0 m/s. After the collision, cart 1 is moving to the left at 1.0 m/s
and cart 2 is moving to the right at 1.0 m/s.

Let “the system” be cart 1 + cart 2. With the given values, is the
system’s total momentum the same before and after the collision?

What is the coefficient of restitution, e, for this collision?

Initial and final momentum are both zero, as you can verify. The
relative speed of the two objects is reduced by a factor e = 0.5.



A battery-powered car, with bald tires, sits on a sheet of ice.
Friction between the bald tires and the ice is negligible. The driver
steps on the accelerator, but the wheels just spin (frictionlessly) on
the ice without moving the car. Is the car an isolated system
(considering only the coordinate along the car’s axis) — i.e. does
nothing outside the system push/pull on anything inside the
system? Is it a closed system (i.e. negligible energy is transferred
in/out of the system)?

(A) Closed but not isolated.

(B) Isolated but not closed.

(C) Both closed and isolated.

(D) Isolated: yes. Closed: very nearly so, yes.

(E) Neither closed nor isolated.



A battery-powered Aston Martin car, with James-Bond-like spiked
tires, sits on a sheet of ice. Agent 007 (or maybe it is really Austin
Powers?) steps on the pedal, and the car accelerates forward. Is
the car an isolated system (considering only the coordinate along
the car’s axis), i.e. nothing outside the system pushes/pulls on
anything inside the system? Is it a closed system (i.e. negligible
energy is transferred in/out of the system)?

(A) Closed but not isolated.

(B) Isolated: no. Closed: very nearly so, yes.

(C) Isolated but not closed.

(D) Both closed and isolated.

(E) Neither closed nor isolated.



A battery-powered Aston Martin car, with James-Bond-like spiked
tires, sits on a sheet of ice. Agent 007 steps on the accelerator,
and the car accelerates forward. All the while, a high-tech solar
panel on the car’s roof rapidly charges the car’s battery. Is the car
an isolated system (considering only the coordinate along the car’s
axis), i.e. nothing outside the system pushes/pulls on anything
inside the system? Is it a closed system (i.e. negligible energy is
transferred in/out of the system)?

(A) Closed but not isolated.

(B) Isolated but not closed.

(C) Both closed and isolated.

(D) Neither closed nor isolated.



A battery-powered Aston Martin, with James-Bond-like spiked
tires, sits atop an iceberg that floats in the North Sea. Agent 007
steps on the accelerator, and the car accelerates forward. (What
happens to the iceberg?) All the while, a high-tech solar panel on
the car’s roof rapidly charges the car’s battery. Ignore any friction
(or viscosity, drag, etc.) between the water and the iceberg. Which
statement is true?

(A) “Car alone” system is isolated but not closed.

(B) “Car + iceberg” system is isolated but not closed.

(C) “Iceberg alone” system is isolated but not closed.

(D) “Car alone” system is isolated and closed.

(E) “Car + iceberg” system is isolated and closed.

(F) “Iceberg alone” system is isolated and closed.

(G) None of the above.



I An isolated system has no mechanism for momentum to get
in/out of the system from/to outside of the system. This
means nothing outside of the system can push/pull on
anything inside of the system. (Later this week, we’ll say: “no
external forces act on the system.”)

I This will make more sense when we discuss forces, next time!

I A hugely important idea in physics is that if the parts of a
system interact only with each other (do not push/pull on
anything outside of the system), then the total momentum of
that system does not change.

I A closed system has no mechanism for energy to get in/out
of the system. Examples so far are contrived, but soon we will
learn to calculate energy stored in springs, energy stored in
Earth’s gravitational field, etc. The concept of a closed
system is much more useful once we learn how to account for
the many ways energy can be stored.

I Accounting for movement of energy in/out of a system will
make more sense when we discuss work, just after forces.



I put two carts on a low-friction track, with a compressed spring
between them. I release the spring by remote control, which sets
the carts moving apart. What system is isolated?

(A) One cart.

(B) Cart + spring + other cart.

(C) One cart plus the spring.

(D) None of the above.



I put two carts on a low-friction track, with a compressed spring
between them. I release the spring by remote control, which sets
the carts moving apart. Is the cart + spring + other cart system
closed?

(A) Yes, for all practical purposes, because the system’s total
energy K1 + K2 + Espring is the same before and after
releasing the spring, and other tiny transfers of energy
(escaping sound, etc.) are negligible by comparison.

(B) No.



I put two carts on a low-friction track, with a compressed spring
between them. I release the spring by remote control, which sets
the carts moving apart. Is the spring alone a closed system?

(A) Yes.

(B) No, because it transferred energy to the carts, which are
outside of what you’re now calling “the system.”



I put two carts on a low-friction track, with a lighted firecracker
between them. The firecracker explodes, which sets the carts
moving apart. Is the cart + firecracker + other cart system closed?

(A) Yes, by analogy with the cart + spring + cart system.

(B) Yes, for some other reason.

(C) No, because realistically, some of the firecracker’s energy will
escape in the form of heat, flying debris, etc. So really energy
conservation only provides an upper limit on K1 + K2 after the
explosion, because accounting for where the energy goes is
more difficult here than for a simple spring.

(D) No, for some other reason.

(E) I still don’t understand what “closed” means.



A variation on HW2 #8

A rock dropped from the top of a building travels 21.5 m in the
last second before it hits the ground. Assume that air resistance is
negligible. (Homework asked, “How tall is the building?”) Which
of the following statements is true? (Let x-axis point upward.)

(A) The rock’s average velocity vx ,av during the last 1.0 s of its
fall is −21.5 m/s.

(B) The rock’s instantaneous velocity vx one second before it hits
the ground is −21.5 m/s.

(C) The rock’s instantaneous velocity vx at the instant just before
it hits the ground is −21.5 m/s.

(D) Statements (A), (B), (C) are all true.

(E) Statements (A), (B), (C) are all false.



A rock dropped from the top of a building travels 21.5 m in the
last second before it hits the ground. Assume that air resistance is
negligible. (Homework asked, “How tall is the building?”) At the
instant just before hitting the ground, the rock’s speed is

(A) 21.5 m/s

(B) −21.5 m/s

(C) Somewhat faster than 21.5 m/s

(D) Somewhat slower than 21.5 m/s

(E) We don’t have enough information to decide.



A rock dropped from the top of a building travels 21.5 m in the
last second before it hits the ground. Assume that air resistance is
negligible. (Homework asked, “How tall is the building?”) Let the
building height be h. Let the total time the rock falls be t. Which
is a true statement about the problem?

(A) h − 1
2 gt2 = 0

(B) 0− gt = −21.5 m/s

(C) h − 1
2 g [t − 1.0 s]2 = 21.5 m

(D) 0− g [t − 1.0 s] = −21.5 m/s

(E) (A) and (B) are both true.

(F) (A) and (C) are both true.

(G) (A), (B), (C), and (D) are all true.

(H) (A), (B), (C), and (D) are all false.



video segment break

I begin video preceding ws06

I There are very few results from chapter 6 that you will need
to remember, so this time watch the video lecture first, then
skim Mazur chapter 6. Having first watched the video will, I
hope, help to you know where to focus your attention as you
skim through the chapter.

I The main reason for chapter 6 is to build some intuition that
will help us, once we reach chapter 8, to better understand
forces.

I Your patience will soon be rewarded: once we reach chapter
8, we’ll be using Newton’s three laws. We’ll then continue to
use them throughout the rest of the course.



I Ch6 and Ch7 take some time to read, but they don’t add
many new equations (“quantitative results”) to learn how to
work with. Ch5 (energy) and Ch8 (force) get more class time
than Ch6 and Ch7. So there is really one substantive chapter
this week and one next week.

I We are going quickly through the early chapters & will slow
down for the more difficult topics in Ch10,11,12. The faster
pace now lets us make time for “structures” applications later.



Where are we (going)?

To analyze structures, you need a thorough understanding of
forces, torques (a.k.a. “moments” of forces), and vectors.



Where are we (going)?

(Richard Wesley: “A course should tell a story.”)

I To analyze structures, you need a thorough understanding of
forces, torques (a.k.a. “moments” of forces), and vectors.

I To understand forces well, you need a solid grasp of
I How forces affect motion.
I How different forces relate to one another.
I How objects interact with one another via forces.

I In ch2–3, we studied the key concepts of motion: position,
velocity, acceleration, etc.

I In ch4–5, we studied two key conservation laws (momentum,
energy) and some of the restrictions they place on how
colliding objects can interact with one another.

I Finally in ch8 we’ll discuss forces! We’re preparing your mind
for forces in ch6–7 by learning a few more of the restrictions
imposed, as a consequence of momentum & energy
conservation, on how objects can interact with one another.



If “inertial reference frames” baffled you:
I Imagine yourself trying to pour a cup of coffee while standing

up on an airplane that is cruising smoothly at constant
velocity. No problem.

I Now imagine trying to pour coffee while the airplane is taking
off, landing, turning sharply, or experiencing turbulence. Your
eye and hand are working from the perspective of a
non-inertial reference frame — a set of coordinate axes that is
accelerating w.r.t. “the fixed stars.” The usual rules of physics
don’t work. To use the usual rules of physics, you have to
analyze the situation from the perspective of an inertial frame.

I If you want more detail on frames of reference, watch this
30-minute educational video from 1960. Email me a few
sentences detailing what you learned for extra credit.

https://youtu.be/bJMYoj4hHqU

https://youtu.be/bJMYoj4hHqU


Chapter 6 included a few key ideas, some of which were obscured
by the notation and equations.

Law of inertia — this is big deal! (a.k.a. Newton’s law #1.)

I In an inertial reference frame, an isolated object at rest
remains at rest, and an isolated object in motion keeps
moving at a constant velocity.

I You can’t “feel” the difference between being at rest in Earth’s
frame vs. being at rest in some other inertial reference frame.

I Imagine that you’re sitting on an airplane, pouring a cup of
coffee, juggling, or maybe just tossing a single ball into the air
and catching it. If the airplane is cruising at constant velocity,
is all of this activity feasible?

I What if you try the same thing while the airplane is rapidly
screeching to a halt on the runway immediately after landing?

I (Illustrate with “ball popper.”)



The law of inertia states that in an inertial reference frame, any
isolated object that is at rest remains at rest, and any isolated
object in motion keeps moving at a constant velocity.

Imagine that you are in a jet airplane that has just landed and is in
the midst of screeching to a stop on the runway. (You are wearing
your seatbelt!) Is the frame of reference in which the airplane is at
rest an inertial frame? Will a marble, initially sitting at rest on the
floor of the airplane, as observed from the frame in which the
airplane is at rest (i.e. as observed by a passenger, with the window
shades down), remain at rest as the airplane screeches to a stop?

(A) Yes (inertial frame) and Yes (marble)

(B) Yes (inertial frame) and No (marble)

(C) No (inertial frame) and Yes (marble)

(D) No (inertial frame) and No (marble)



Suppose I’m a passenger on a train that is speeding toward NYC
at 40 m/s (heading “north”). In search of coffee, I walk toward the
back of the train at 2 m/s, just as the train whizzes past Princeton
Junction. From the perspective of a passenger watching me from
the train platform, my velocity is

(A) 2 m/s northward

(B) 2 m/s southward

(C) 42 m/s northward

(D) 40 m/s northward

(E) 38 m/s northward

~vEarth,me = ~vEarth,Train + ~vTrain,me

“(My velocity w.r.t. Earth) =
(Train’s velocity w.r.t. Earth) + (my velocity w.r.t. Train)”



I’m driving east at 50 kph. A little kid looks out the window of a
westbound car that is going 40 kph. From the kid’s point of view,
what is my velocity?

(A) 10 kph east

(B) 40 kph east

(C) 50 kph east

(D) 90 kph east

(E) 10 kph west

(F) 40 kph west

(G) 50 kph west

(H) 90 kph west



I’m driving east at 50 kph. A truck driving east at 60 kph
overtakes me. As I look out my window, how fast does the truck
appear to be moving?

(a) 10 kph

(b) 50 kph

(c) 60 kph

(d) 110 kph



We stopped here on Monday. We’ll finish up this stuff from
chapters 6 & 7 and then we’ll start talking about forces some time
during Wednesday’s class.



More chapter 6 key ideas

I Center of mass: basically a weighted-average of positons.

~rcm =
m1~r1 + m2~r2 + · · ·

m1 + m2 + · · ·

xcm =
m1x1 + m2x2 + · · ·

m1 + m2 + · · ·
I CoM of an object lies along axis of symmetry (if there is one).

I When analyzing the motion of a complicated object
(composed of many pieces), it is often useful to consider
separately the motion of its CoM and the motion of the
various internal parts w.r.t. the CoM.

I Illustrate by tossing complicated object in the air.



xcm =
m1x1 + m2x2 + · · ·

m1 + m2 + · · ·

At what value of x is the CoM of this pair of masses?



xcm =
m1x1 + m2x2 + · · ·

m1 + m2 + · · ·

At what value of x is the CoM of this pair of masses?



More chapter 6 key ideas

I “Center-of-mass velocity” is the velocity of the CoM of a
system of objects:

~vcm =
m1~v1 + m2~v2 + · · ·

m1 + m2 + · · ·

vx ,cm =
m1vx1 + m2vx2 + · · ·

m1 + m2 + · · ·
I An isolated system’s CoM velocity cannot change!

I You can see this by noticing that the numerator in ~vcm is the
system’s total momentum, which you know is constant for an
isolated system.

I If you observe this system from a camera that is moving at
~vcm, the system’s CoM will appear to be at rest. This
camera’s frame-of-reference is called the “ZM frame,”
because the system’s momentum is zero as seen from that
frame (i.e. as seen by that moving camera).



A friend and I take our little track and our two little colliding carts,
and we set them up (probably in the dining car) on board a
moving train (train moving north at constant velocity 30 m/s),
with our little track aligned with the train axis.

I push a 1 kg cart north toward my friend at 1 m/s. She pushes a
1 kg cart south toward me at 1 m/s.

As seen by a camera mounted on the ceiling of the train, what is
the velocity (north) of the center-of-mass of the two-cart system?

(A) +30 m/s (B) −30 m/s (C) +1 m/s (D) −1 m/s (E) 0 m/s

As seen by a camera mounted on the train platform at Princeton
Junction (looking in the window as we go by), what is the
(northward) velocity of the center-of-mass of the two-cart system?

Is one of these two cameras watching from the “zero-momentum”
frame of the two-cart system?



A friend and I take our little track and our two little colliding carts,
and we set them up (probably in the dining car) on board a
moving train (train moving north at constant velocity 30 m/s),
with our little track aligned with the train axis.

I push a 1 kg cart north toward my friend at 3 m/s. She pushes a
2 kg cart south toward me at 6 m/s.

As seen by a camera mounted on the ceiling of the train, what is
the velocity of the center-of-mass of the two-cart system? (Let the
+x axis point north.)

As seen by a camera mounted on the train platform at Princeton
Junction (looking in the window as we go by), what is the
(northward) velocity of the center-of-mass of the two-cart system?

Is one of these two cameras watching from the “zero-momentum”
frame of the two-cart system?



If I observe a system from its zero-momentum reference frame,
what can I say about its center-of-mass velocity?

(A) The center-of-mass velocity (as seen from the ZM frame) is
the same as the velocity of the ZM reference frame (as seen
from the Earth frame).

(B) The center-of-mass velocity (as seen from the ZM frame) is
zero.

(C) When observing from Earth’s frame of reference, a system’s
center-of-mass velocity will be the same as the velocity (w.r.t.
Earth) of the ZM reference frame.

(D) (A) and (B)

(E) (A) and (C)

(F) (B) and (C)

(G) (A), (B), and (C)



I If you find it tedious to do algebra by hand, you could
consider learning to use Mathematica, which is free (via site
license) for all SAS and Wharton students. I have some
excellent self-study Mathematica materials you could go
through for extra credit. Email if you’re interested.



Physics 8 — Wednesday, September 18, 2019



More chapter 6 key ideas

I Center of mass: basically a weighted-average of positons.

~rcm =
m1~r1 + m2~r2 + · · ·

m1 + m2 + · · ·

xcm =
m1x1 + m2x2 + · · ·

m1 + m2 + · · ·
I CoM of an object lies along axis of symmetry (if there is one).

I When analyzing the motion of a complicated object
(composed of many pieces), it is often useful to consider
separately the motion of its CoM and the motion of the
various internal parts w.r.t. the CoM.

I Illustrate by tossing complicated object in the air.



xcm =
m1x1 + m2x2 + · · ·

m1 + m2 + · · ·

At what value of x is the CoM of this pair of masses?



xcm =
m1x1 + m2x2 + · · ·

m1 + m2 + · · ·

At what value of x is the CoM of this pair of masses?



More chapter 6 key ideas

I “Center-of-mass velocity” is the velocity of the CoM of a
system of objects:

~vcm =
m1~v1 + m2~v2 + · · ·

m1 + m2 + · · ·

vx ,cm =
m1vx1 + m2vx2 + · · ·

m1 + m2 + · · ·
I An isolated system’s CoM velocity cannot change!

I You can see this by noticing that the numerator in ~vcm is the
system’s total momentum, which you know is constant for an
isolated system.

I If you observe this system from a camera that is moving at
~vcm, the system’s CoM will appear to be at rest. This
camera’s frame-of-reference is called the “ZM frame,”
because the system’s momentum is zero as seen from that
frame (i.e. as seen by that moving camera).



A friend and I take our little track and our two little colliding carts,
and we set them up (probably in the dining car) on board a
moving train (train moving north at constant velocity 30 m/s),
with our little track aligned with the train axis.

I push a 1 kg cart north toward my friend at 1 m/s. She pushes a
1 kg cart south toward me at 1 m/s.

As seen by a camera mounted on the ceiling of the train, what is
the velocity (north) of the center-of-mass of the two-cart system?

(A) +30 m/s (B) −30 m/s (C) +1 m/s (D) −1 m/s (E) 0 m/s

As seen by a camera mounted on the train platform at Princeton
Junction (looking in the window as we go by), what is the
(northward) velocity of the center-of-mass of the two-cart system?

Is one of these two cameras watching from the “zero-momentum”
frame of the two-cart system?



A friend and I take our little track and our two little colliding carts,
and we set them up (probably in the dining car) on board a
moving train (train moving north at constant velocity 30 m/s),
with our little track aligned with the train axis.

I push a 1 kg cart north toward my friend at 3 m/s. She pushes a
2 kg cart south toward me at 6 m/s.

As seen by a camera mounted on the ceiling of the train, what is
the velocity of the center-of-mass of the two-cart system? (Let the
+x axis point north.)

As seen by a camera mounted on the train platform at Princeton
Junction (looking in the window as we go by), what is the
(northward) velocity of the center-of-mass of the two-cart system?

Is one of these two cameras watching from the “zero-momentum”
frame of the two-cart system?



If I observe a system from its zero-momentum reference frame,
what can I say about its center-of-mass velocity?

(A) The center-of-mass velocity (as seen from the ZM frame) is
the same as the velocity of the ZM reference frame (as seen
from the Earth frame).

(B) The center-of-mass velocity (as seen from the ZM frame) is
zero.

(C) When observing from Earth’s frame of reference, a system’s
center-of-mass velocity will be the same as the velocity (w.r.t.
Earth) of the ZM reference frame.

(D) (A) and (B)

(E) (A) and (C)

(F) (B) and (C)

(G) (A), (B), and (C)



More chapter 6 key ideas

I An isolated system’s CoM velocity cannot change!

I A somewhat obscure consequence of this fact is that even in a
totally inelastic collision, it is not necessarily possible to
convert 100% of the initial kinetic energy into heating up,
mangling, etc. the colliding objects.

I Momentum conservation requires that the CoM velocity
cannot change, so if the CoM is moving initially, it has to
keep moving after the collision.

I Textbook: “convertible” vs. “translational” parts of a
system’s kinetic energy.

I That idea is worth remembering, but the math is not.

I (Can illustrate using colliding carts.)



You really only need these first two equations from Ch6. The third
one is in the “obscure” category. Don’t worry about it.



Zero-Momentum (ZM) frame for two-object collisions
I Very useful (but difficult to visualize) tool: ZM frame.

I Elastic collision analyzed in ZM (“∗”) frame:

v∗1i ,x = v1i ,x − vZM,x , v∗2i ,x = v2i ,x − vZM,x

v∗1f ,x = −v∗1i ,x , v∗2f ,x = −v∗2i ,x

v1f ,x = v∗1f ,x + vZM,x , v2f ,x = v∗2f ,x + vZM,x

I Inelastic collision analyzed in ZM frame (restitution coeff. e):

v∗1f ,x = −ev∗1i ,x , v∗2f ,x = −ev∗2i ,x

I Step 1: shift velocities into ZM frame, by subtracting vZM,x

I Step 2: write down (very simple!!) answer in ZM frame

I Step 3: shift velocities back into Earth frame, by adding vZM,x

You can try this on some XC problems. Otherwise, skip it.



There are actually three pretty neat situations that you can analyze
quite easily using the “ZM frame” trick:

I When a stationary golf ball is hit by a much more massive golf
club, the golf ball’s outgoing speed is 2× the incoming speed
of the (end of the) club.

I It’s easier to hit a home run off of a fastball than a slow pitch.

I When you drop a basketball with a tennis ball resting atop the
basketball, the result is quite remarkable.

I was planning to skip these as “obscure,” and leave them as topics
for extra-credit problems. But if there is overwhelming demand, we
could work them out one day in class?

(A) Leave it for XC (B) Do it in class



video segment break

I begin video preceding ws07

I Watch this (pretty short) video first, then skim Mazur
chapter 7, as chapter 7 contains only two new equations
worth knowing.

I Again, chapter 7 is here mainly to prepare your mind, and
your intuition, for the force concept. Force will be introduced
in chapter 8 and then used throughout the rest of the course.



Here are the only two equations worth knowing from Chapter 7.
By contrast, Chapter 8 will have quite a few worth knowing!



I Hugely important: when two objects interact only with one
another:

∆p1x = −∆p2x

∆v1x/∆v2x = −m2/m1

a1x

a2x
= −m2

m1

I When the medicine ball and I push apart from one another,
we both accelerate: in opposite directions, and in inverse
proportion to our masses.

I Lifting an object up a height ∆x in Earth’s gravity changes its
gravitational potential energy by

∆UG = mg∆x

I I usually remember U = mgh where h is height

I Basketball: back & forth between 1
2 mv 2 and mgh

until mechanical energy is dissipated into thermal energy



Problem: I release a 1 kg ball from rest, from an initial height
xi = +5.0 m above the ground. (Use g ≈ 10 m/s2.)

(A) What is the ball’s initial G.P.E. ?
(Let’s define x = 0 to be UG = 0.)

(B) What is the ball’s initial K.E. ?

(C) What is the ball’s G.P.E. immediately before it reaches the
ground?

(D) What is the ball’s K.E. immediately before it reaches the
ground?

(E) What is the ball’s speed immediately before it reaches the
ground?

(F) If the ball bounces elastically off of the floor, what height will
it reach after bouncing?

(G) If instead the ball bounces off of the floor with a restitution
coefficient e = 0.9, what height will it reach after bouncing?
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I Wolfram Mathematica is free (site license) for SAS and
Wharton students. I have some very helpful self-study
Mathematica materials you can do for XC. Email if interested.



Problem: Suppose your friend’s mass is about 50 kg, and she
climbs up 30 flights of stairs (that’s about 100 m) to check out a
great rooftop view of the city’s architecture.

(A) By how many joules did climbing the stairs change her G.P.E.?

(B) Where did this gravitational potential energy come from? I
mean what source energy was converted into this G.P.E.?

(C) How many food Calories did she burn (assuming,
unrealistically, that one’s muscles are 100% efficient at
converting food into mechanical work)? [Realistically, your
metabolism/muscles are very roughly about 20% efficient at
turning stored food into mechanical work.]



(Begin digression.)



Dissipative / incoherent / irreversible

A simple ball /
spring model of
the atoms in a
solid.

This is
sometimes a
useful picture
to keep in your
head.



Dissipative / incoherent / irreversible

2D version for
simplicity

illustrate
“reversible”
and
“irreversible”
deformation
with e.g.
marbles and
egg crate



Dissipative / incoherent / irreversible

I showed you once before my low-tech animation of two objects in
a totally inelastic collision. Collision dissipates coherent motion
(kinetic energy) into incoherent vibration of atoms (thermal
energy)

https://youtu.be/SJIKCmg2Uzg

https://youtu.be/SJIKCmg2Uzg


Here’s a high-speed movie of a (mostly) reversible process a golf
ball bouncing off of a wall at 150 mph.

https://www.youtube.com/watch?v=AkB81u5IM3I

https://www.youtube.com/watch?v=AkB81u5IM3I


(End digression.)



video segment break

I begin video preceding ws08

I This time, carefully read Mazur chapter 8, then watch this
video.



Chapter 8: Force

I Forces always come in pairs: when A and B interact,

~FA on B = − ~FB on A

I “Interaction pairs” have equal magnitude, opposite direction.
Always. That’s called Newton’s third law. Difficult idea!

I The acceleration of object A is given by vector sum of all of

the forces acting ON object A, divided by mA. (Law #2.)

~aA =
1

mA

∑
~Fon A

I In an inertial frame of reference, object A moves at constant
velocity (or stays at rest) if and only if the vector sum
(
∑ ~Fon A) equals zero. (Law #1.) #1 seems redundant?!



You push with a steady force of 25 N on a 50 kg desk fitted with
(ultra-low-friction) casters on its four legs. How long does it take
you (starting from rest) to get the desk across a room that is 25 m
wide?

(A) 0.71 s

(B) 1.0 s

(C) 1.4 s

(D) 5.0 s

(E) 7.1 s

(F) 10 s

(G) 14 s



Free-body diagram: A sort of visual accounting procedure for
adding up the forces acting ON a given object. FBD for ring:



Chapter 8 (“force”) reading Q #1

“Think about the familiar example of a basketball dropped from
eye level and allowed to bounce a few times. Describe the forces
acting on the basketball at its lowest point, as it is in contact with
the floor and is changing direction from downward to upward
motion.”

I Working with 1-2 nearby people, draw a free-body diagram of
the ball at its lowest point (while it is most squished). Include
all forces acting ON the ball. Indicate the direction of each
force with its vector arrow. Indicate the relative magnitudes of
the forces by the lengths of the arrows. Indicate the direction
of the ball’s acceleration with an arrow (or a dot).

I When you finish that, draw a second free-body diagram for
the ball — this time while the ball is in the air. Will the
diagram be different while the ball is rising vs. falling?

I Discuss! I may call on people to describe their diagrams.

(My diagram appears on the next slide.)



Which free-body diagram best represents the forces acting on the
basketball at the bottom of its motion?

A

C

B

D



Which free-body diagram best represents the forces acting on the
basketball at the top of its motion?

A

C

B

D



If I were to draw a free-body diagram for the basketball when it is
halfway back down to the ground, that new diagram would be

(A) the same as

(B) slightly different from

(C) very different from

the drawing for the basketball when it is at the top of its motion?
(Neglect air resistance.)



Equal and opposite forces?

Consider a car at rest on a road. We can conclude that the
downward gravitational pull of Earth on the car and the upward
contact force of the road on the car are equal and opposite because

(A) the two forces form an interaction pair.

(B) the net force on the car is zero.

(C) neither: the two forces are not equal and opposite

(D) both (A) and (B)

We stopped after this — will resume here.
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Chapter 8 (“force”) reading Q #2

“Explain briefly in your own words what it means for the
interaction between two objects to involve ‘equal and opposite’
forces. Can you illustrate this with an everyday example?”

I For instance, if I push against some object O that moves,
deforms, or collapses in response to my push, is the force
exerted by O on me still equal in magnitude and opposite in
direction to the force exerted by me on O?

I If every force is paired with an equal and opposite force, why
is it ever possible for any object to be accelerated? Don’t they
all just cancel each other out?

I (I think the next example may help.)



Have you ever spotted the Tropicana juice train?!



vocab: powered “locomotive” pulls the unpowered “cars”



Equal and opposite forces?
An engine (“locomotive”) (the first vehicle of the train) pulls a
series of train cars. Which is the correct analysis of the situation?

(A) The train moves forward because the locomotive pulls forward
slightly harder on the cars than the cars pull backward on the
locomotive.

(B) Because action always equals reaction, the locomotive cannot
pull the cars — the cars pull backward just as hard as the
locomotive pulls forward, so there is no motion.

(C) The locomotive gets the cars to move by giving them a tug
during which the force on the cars is momentarily greater than
the force exerted by the cars on the locomotive.

(D) The locomotive’s force on the cars is as strong as the force of
the cars on the locomotive, but the frictional force by the
track on the locomotive is forward and large while the
backward frictional force by the track on the cars is small.

(E) The locomotive can pull the cars forward only if its inertia
(i.e. mass) is larger than that of the cars.



Let’s see the effect of including or not including the
frictional force of the tracks pushing forward on the
wheels of the engine.

I’ll pretend to be the engine!



Only external forces can accelerate a system’s CoM

Let’s define “system” to be locomotive+car.
Remember that forces internal to system cannot
accelerate system’s CoM.

To change the velocity of the CoM, we need a force
that is external to the system.

(By the way, when you look at the two free-body
diagrams on the next page, tell me if you see an
“interaction pair” of forces somewhere!)





~aCoM =

∑ ~F external

mtotal

It’s useful to remember that even if the several pieces of a system
are behaving in a complicated way, you can find the acceleration of
the CoM of the system by considering only the external forces
that act on the system.

Once again, a careful choice of “system” boundary often makes
the analysis much easier. We’ll see more examples of this soon.
(This topic also arises in HW4 #9 and #10, so we’ll try to
practice it today or Wednesday.)



Hooke’s law

I When you pull on a spring, it stretches

I When you stretch a spring, it pulls back on you

I When you compress a spring, it pushes back on you

I For an ideal spring, the pull is proportional to the stretch

I Force by spring, on load is

Fx = −k (x − x0)

I The constant of proportionality is the “spring constant” k ,
which varies from spring to spring. When we talk later about
properties of building materials, we’ll see where k comes from.

I The minus sign indicates that if I move my end of the spring
to the right of its relaxed position, the force exerted by the
the spring on my finger points left.

Let’s look at some examples of springs.



A spring hanging from the ceiling is 1.0 m long when there is no
object attached to its free end. When a 4.0 kg brick is attached to
the free end, the spring is 2.0 m long. (For easier math, use
g = 10m/s2 = 10N/kg.) What is the spring constant of the
spring?

[Hint: draw a FBD for the brick, to figure out what magnitude
force the spring must be exerting on the brick. The magnitude of
the force exerted by the spring is the spring constant (k) times
how far the spring is stretched w.r.t. its relaxed length.]

(A) 5.0 N/m

(B) 10 N/m

(C) 20 N/m

(D) 30 N/m

(E) 40 N/m



Measuring your weight (F = mg) with a spring scale

Most bathroom scales work something like this:

Now suppose I take my bathroom scale on an elevator . . .



Bathroom scale on an accelerating elevator
A bathroom scale typically uses the compression of a spring to
infer the gravitational force (F = mg) exerted by Earth on you,
which we call your weight.

Suppose I am standing on such a scale while riding an elevator.
With the elevator parked at the bottom floor, the scale reads
700 N. I push the button for the top floor. The door closes. The
elevator begins moving upward. At the moment when I can feel
(e.g. in my stomach) that the elevator has begun moving upward,
the scale reads

(A) a value smaller than 700 N.

(B) the same value: 700 N.

(C) a value larger than 700 N.

You might want to try drawing a free-body diagram for your body,
showing the downward force of gravity, the upward force of the
scale pushing on your feet, and your body’s acceleration.



Tension vs. compression

I When a force tries to squish a spring, that is called
compression, or a compressive force

I When a force tries to elongate a spring, that is called tension,
or a tensile force

I We’ll spend a lot of time next month talking about
compression and tension in columns, beams, etc.

I For now, remember that tension is the force trying to pull
apart a spring, rope, etc., and compression is the force trying
to squeeze a post, a basketball, a mechanical linkage, etc.
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I Thanks to a 2019 student, here’s a neat video showing that
the CoM of a dropped slinky falls at acceleration g , even
though the top and bottom of the slinky do not move in
unison:
https://www.youtube.com/watch?v=eCMmmEEyOO0&t=43

super-sized version (harder to see than original version):
https://www.youtube.com/watch?v=JsytnJ_pSf8&t=88

https://www.youtube.com/watch?v=eCMmmEEyOO0&t=43
https://www.youtube.com/watch?v=JsytnJ_pSf8&t=88


Since Monday, we are finally talking about forces
I The force concept quantifies interaction between two objects.

I Forces always come in “interaction pairs.” The force exerted
by object “A” on object “B” is equal in magnitude and
opposite in direction to the force exerted by B on A:

~FAB = −~FBA

I The acceleration of object “A” is given by the vector sum of
the forces acting on A, divided by the mass of A:

~aA =

∑ ~F(on A)

mA

I The vector sum of the forces acting on an object equals the
rate of change of the object’s momentum:∑

~F(on A) =
d~pA

dt



I An object whose momentum is not changing is in translational
equilibrium. We’ll see later that this will be a big deal for the
members of a structure! To achieve this, we will want all
forces acting on each member to sum vectorially to zero.

I The unit of force is the newton. 1 N = 1 kg ·m/s2.

I Free-body diagrams depict all of the forces acting on a given
object. They are used all the time in analyzing structures!

I The force exerted by a compressed or stretched spring is
proportional to the displacement of the end of the spring
w.r.t. its relaxed value x0. k is “spring constant.”

F spring
x = −k(x − x0)

I When a rope is held taut, it exerts a force called the tension
on each of its ends. Same magnitude T on each end.



Tension in cables (repeated from Monday)
I A large category of physics problems (and even architectural

structures, e.g. a suspension bridge) involves two objects
connected by a rope, a cable, a chain, etc.

I These things (cables, chains, ropes) can pull but can’t push.
There are two cables in this figure:



Tension in cables

I Usually the cables in physics problems are considered light
enough that you don’t worry about their inertia (we pretend
m = 0), and stiff enough that you don’t worry about their
stretching when you pull on them (we pretend k =∞).

I The cable’s job is just to transmit a force from one end to the
other. We call that force the cable’s tension, T .

I A cable always pulls on both ends with same magnitude (T ),
though in opposite directions. [Formally: we neglect the
cable’s mass, and the cable’s acceleration must be finite.]

I (We stopped here on Monday.)

I E.g. hang basketball from ceiling. Cable transmits mg to
ceiling. Gravity pulls ball down. Tension pulls ball up. Forces
on ball add (vectorially) to zero.

I Let’s try an example.



Two blocks of equal mass are pulled to the right by a constant
force, which is applied by pulling at the arrow-tip on the right. The
blue lines represent two identical sections of rope (which can be
considered massless). Both cables are taut, and friction (if any) is
the same for both blocks. What is the ratio of T1 to T2?

(A) zero: T1 = 0 and T2 6= 0.

(B) T1 = 1
2 T2

(C) T1 = T2

(D) T1 = 2T2

(E) infinite: T2 = 0 and T1 6= 0.

It’s worth drawing an FBD first for the two-mass system, then for
the left mass, then for the right mass.



Three blocks of equal mass are pulled to the right by a constant
force. The blocks are connected by identical sections of rope
(which can be considered massless). All cables are taut, and
friction (if any) is the same for all blocks. What is the ratio of T1

to T2?

(A) T1 = 1
3 T2

(B) T1 = 2
3 T2

(C) T1 = T2

(D) T1 = 3
2 T2

(E) T1 = 2T2

(F) T1 = 3T2



Three blocks of equal mass are pulled to the right by a constant
force. The blocks are connected by identical sections of rope
(which can be considered massless). All cables are taut, and
friction (if any) is the same for all blocks. What is the ratio of T1

to T3?

(A) T1 = 1
3 T3

(B) T1 = 2
3 T3

(C) T1 = T3

(D) T1 = 3
2 T3

(E) T1 = 2T3

(F) T1 = 3T3



Atwood machine — discuss with your neighbors

A contraption something like this appears in HW4 (but with a
spring added, to keep things interesting).

I Why aren’t the two masses accelerating?

I What is the tension in the cable when the two masses are
equal (both 5.0 kg) and stationary, as they are now?

I If I make one mass equal 5.0 kg and the other mass equal
5.1 kg, what will happen? Can you predict what the
acceleration will be?

I If I make one mass equal 5.0 kg and the other mass equal
6.0 kg, will the acceleration be larger or smaller than in the
previous case?

I Try drawing a free-body diagram for each of the two masses

I By how much do I change the gravitational potential energy of
the machine+Earth system when I raise the 6 kg mass 1 m?



I Two more comments:

I This machine was originally invented as a mechanism for
measuring g and for studying motion with constant
acceleration.

I The same concept is used by the “counterweight” in an
elevator for a building.



Atwood machine: take m1 > m2

Pause here: how can we solve for ax? Try it before we go on.



Atwood machine: write masses’ equations of motion

m1g − T = m1ax

T −m2g = m2ax

Solve second equation for T ; plug T
into first equation; solve for ax :

T = m2ax + m2g ⇒ m1g − (m2ax + m2g) = m1ax ⇒

(m1 −m2)g = (m1 + m2)ax ⇒ ax =
m1 −m2

m1 + m2
g

For m2 = 0, ax = g (just like picking up m1 and dropping it)

For m1 ≈ m2, ax � g : small difference divided by large sum.



ax =
m1 −m2

m1 + m2
g

For example, m1 = 4.03 kg, m2 = 3.73 kg:

ax =
m1 −m2

m1 + m2
g =

(
0.30 kg

7.76 kg

)(
9.8 m/s2

)
= 0.38 m/s2

How long does it take m1 to fall 2 meters?

x =
ax t2

2
⇒ t =

√
2x

ax
=

√
(2)(2 m)

(0.38 m/s2)
≈ 3.2 s



You can also solve for T if you like (eliminate ax), to find the
tension while the two masses are free to accelerate (no interaction
with my hand or the floor).

Start from masses’ equations of motion:

m1g − T = m1ax , T −m2g = m2ax

Eliminate ax :

m1g − T

m1
=

T −m2g

m2
⇒ m1m2g −m2T = m1T −m1m2g

⇒ 2m1m2g = (m1 + m2)T ⇒ T =
2m1m2

m1 + m2
g

consider extreme cases: m2 = m1 vs. m2 � m1.



HW4 / problem 7: tricky!
7*. A modified Atwood machine is shown below. Each of the three
blocks has the same inertia m. One end of the vertical spring,
which has spring constant k, is attached to the single block, and
the other end of the spring is fixed to the floor. The positions of
the blocks are adjusted until the spring is at its relaxed length.
The blocks are then released from rest. What is the acceleration of
the two blocks on the right after they have fallen a distance D?
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Work with your neighbor to draw a FBD for mass 2. Then draw a
FBD for mass 1. Assume that ~a = ~0 for both masses.





Next: How would these two diagrams change if we imagine that
the ceiling is actually the ceiling of an elevator that is accelerating
upward at ax = +1.96m/s2 (that’s 0.2g — you can round off).



How do you use these two FBDs to write Newton’s 2nd law for
each of the two masses?



Note: because the length of an (idealized) taut cable doesn’t
change as its tension increases, a1x = a2x . Distance between
blocks only changes if the cable goes slack (no longer in tension).



In the 17th century, Otto von Güricke, a physicist in Magdeburg,
fitted two hollow bronze hemispheres together and removed the air
from the resulting sphere with a pump. Two eight-horse teams
could not pull the halves apart even though the hemispheres fell
apart when air was readmitted. Suppose von Güricke had tied both
teams of horses to one side and bolted the other side to a giant
tree trunk. In this case, the tension on the hemispheres would be

(A) twice

(B) exactly the same as

(C) half

what it was before.

(To avoid confusion, you can replace the phrase “the hemispheres”
with the phrase “the cable” if you like. The original experiment was
a demonstraton of air pressure, but we are interested in tension.)



Suppose a horse can pull 1000 N

~FA on B = −~FB on A

|~FA on B | = |~FB on A| = 1000 N

T = 1000 N

~aA = ~0

~aB = ~0

The acceleration of each horse is zero. What are the two
horizontal forces acting on horse A? What are the two horizontal
forces acting on horse B?



Suppose tree stays put, no matter how hard horse pulls

~FA on tree = −~Ftree on A

|~FA on tree| = |~Ftree on A| = 1000 N

T = 1000 N

~aA = ~0

What are the two horizontal forces acting on horse A?



Suppose tree stays put, no matter how hard horses pull. Somehow
we attach both horses to the left end of the same cable.

~FA+B on tree = −~Ftree on A+B

|~FA+B on tree| = |~Ftree on A+B | = 2000 N

T = 2000 N

~ahorsesA+B = ~0

What are the external forces acting on the two-horse system
(system = horse A + horse B)?



Horse C loses his footing when he pulls > 1000 N

|~FA+B on C| = |~FC on A+B | = 2000 N

T = 2000 N

Force of ground on C is 1000 N to the right. Tension pulls on C
2000 N to the left. C accelerates to the left.

| ~aC | = (2000 N− 1000 N)/mC



Today, while we happen to have this rope attached to the ceiling, I
want to re-visit something (related to forces) that I demonstrated
on the first day of class. Believe it or not, this relates pretty
directly to architecture.

My friend and I both want to hang on to a rope by our hands,
perhaps because being up above the ground lets us peek over a tall
fence and see into an amazing new construction site next door.

We consider two different methods of hanging onto the rope. In
the first method, I hold the rope with my hands, about 5 meters
off the ground, and my friend (whose mass is the same as mine)
holds the rope with his hands, about 3 meters off the ground.

In the second method, I told the rope with my hands, as before,
and my friend holds onto my feet (instead of the rope).

Let’s draw a picture, to make it more clear.







The downward force exerted by my hands on the rope is . . .

(A) The same for both methods: equal to mg (m = my mass)

(B) The same for both methods: equal to 2mg

(C) Twice as much for 1st method (2mg vs. mg)

(D) Twice as much for 2nd method (2mg vs. mg)



Kansas City Hyatt Regency skywalk collapse

For more like this, read To Engineer is Human by Henry Petroski.



As designed, each of the two skywalks hangs onto the rope with its
own hands. As built, the lower skywalk’s hands are effectively
hanging onto the upper skywalk’s feet! So the upper skywalk’s grip
on the rope feels 2× larger force than in original design. Oops!



A real-world use for free-body diagrams! But these diagrams aren’t
careful to single out one object, to indicate clearly what that object
is, and to draw only the forces acting ON that object. (Alas.)

The author uses the symbol P for a “point” force (or point load,
or a “concentrated load”), as is the custom in engineering and
architecture. When you see “P” here, pretend it says “F ” or “mg”
instead.



Upper skywalk loses its grip on the “rope”



HW4 / problem 9: slightly modified (skip?)

9*. A tugboat pulls two barges (connected in series, like a train,
with taut ropes as couplings) down a river. The barge connected
to the tugboat, carrying coal, has inertia m1. The other barge,
carrying pig iron, has inertia m2. The frictional force exerted by
the water on the coal barge is F f

w1, and that exerted by the water
on the pig-iron barge is F f

w2. The common acceleration of all three
boats is ax . Even though the ropes are huge, the gravitational
force exerted on them is negligible, as are the ropes’ inertias. How
can you solve for the tension in each rope?



HW4 / problem 10 (modified): (skip?)

10*. A red cart of mass mred is connected to a green cart of mass
mgreen by a relaxed spring of spring constant k . The green cart is
resting against a blue cart of mass mblue. All are on a low-friction
track. You push the red cart to the right, in the direction of the
green cart, with a constant force F c

you,green. (a) What is the
acceleration of the center-of-mass of the three-cart system?
(b) What is the acceleration of each cart the instant you begin
to push? (c) What is the acceleration of each cart the instant
when the spring is compressed a distance D with respect to its
relaxed length?



(skip?)

Estimate the spring constant of your car springs. (Experiment: sit
on one fender.)

(What do you think?)



(skip)
When a 5.0 kg box is suspended from a spring, the spring stretches
to 1.0 m beyond its equilibrium length. In an elevator accelerating
upward at 0.98 m/s2 (that’s “0.1 g”), how far will the spring
stretch with the same box attached?

(A) 0.50 m

(B) 0.90 m

(C) 1.0 m

(D) 1.1 m

(E) 1.2 m

(F) 1.9 m

(G) 2.0 m

(By the way: When a tall building sways back and forth in the
wind, the uncomfortable acceleration experienced by the occupants
is often measured as a fraction of “g .”)



(skip)

Let’s start by drawing a FBD for the box when the elevator is not
accelerating.



(skip)

F c
sb,x + FG

Eb,x = max = 0

F c
sb,x = −k (x − x0) = −k(−1 meter) FG

Eb,x = −mg

+k(1 meter)−mg = max = 0

Next, what happens if elevator is accelerating upward at 1 m/s2?



(skip)

F c
sb,x + FG

Eb,x = max = +1 m/s2

F c
sb,x = −k (x − x0) FG

Eb,x = −mg

−k(x − x0)−mg = max = +0.1mg

combine with +k(1 meter)−mg = 0 from last page



(skip)

−k(x − x0)−mg = max = +0.1g ⇒ −k(x − x0) = +1.1mg

combine with +k(1 meter)−mg = 0 ⇒ +k(1 meter) = mg

Divide two boxed equations: get x − x0 = −1.1 meters

So the spring is now stretching 1.1 meters beyond its relaxed
length (vs. 1.0 meters when ax = 0).

The upward force exerted by the spring on the box is m(g + ax).



(skip)

When a 5.0 kg box is suspended from a spring, the spring stretches
to 1.0 m beyond its equilibrium length. In an elevator accelerating
upward at 0.98 m/s2, how far will the spring stretch with the same
box attached?

(A) 0.50 m

(B) 0.90 m

(C) 1.0 m

(D) 1.1 m

(E) 1.2 m

(F) 1.9 m

(G) 2.0 m



video segment break

I begin video preceding ws09

I Read/skim Mazur chapter 9, then watch this video.



Ch9: work. Two definitions of work

I Work equals the change in energy of a system due to external
forces. If the energy of a system increases, the (arithmetic
sum of) work done by external forces on the system is
positive; if the energy of a system decreases, the (sum of)
work done by external forces on the system is negative.

∆Esystem = Wdone ON system

I The work done by an external force ~F on a system (in one

dimension) is W =

∫
Fx(x) dx or just W = Fx ∆x for a

constant force. When the force and the “displacement of the
point of application of the force” point in the same (opposite)
direction, the work done by ~F is positive (negative).

Let’s initially focus on the second, more familiar, definition.



Chapter 9: first reading question

1. If you graph the work, W (x), done by a force on an object as a
function of the object’s position, x , what graphical feature
represents the force, F (x), exerted on the object?

(A) The force is the area under the work curve.

(B) The force is the slope of the work curve.

(C) The vertical axis, i.e. the height of the work curve.

(D) The second derivative.



Chapter 9: first reading question

1. If you graph the work done by a force on an object as a function
of the object’s position, what graphical feature represents the force
exerted on the object?

Since work equals the integral of force w.r.t. displacement,
W =

∫
Fxdx or W = Fx∆x , the force is equal to the work per

unit displacement. On a graph of W vs. x , the slope, dW /dx , is
equal to the force.



Suppose you want to ride your mountain bike up a steep hill. Two
paths lead from the base to the top, one twice as long as the
other. (Your bicycle has only one gear.) Compared to the average
force you would exert if you took the short path, the average force
you exert along the longer path is

(A) one-fourth as large.

(B) one-third as large.

(C) one-half as large.

(D) the same.

(E) twice as large.

(F) undetermined — it depends on the time taken

(Imagine how hard you have to press down on the pedals, on
average, to make the bike go up one path vs. the other. As a kid,
did you ever zig-zag up a really steep hill on your one-speed bike,
or if your multi-speed bike’s lowest gear was still not low enough?)



Imagine me towing Alfie up a steep hill behind my bicycle . . . .

https://youtu.be/Yigqi7zGCfQ

https://youtu.be/ewvet0I1YiM

https://youtu.be/Yigqi7zGCfQ
https://youtu.be/ewvet0I1YiM


A piano mover raises a 100 kg piano at
a constant speed using the pulley
system shown here. With how much
force is she pulling on the rope?
(Ignore friction and assume
g ≈ 10 m/s2.)

(A) 2000 N

(B) 1500 N

(C) 1000 N

(D) 750 N

(E) 500 N

(F) 200 N

(G) 50 N

(H) impossible to determine.



Block and tackle: “mechanical advantage”

This graphic shows a 2:1 mechanical advantage. The block &
tackle in the classroom shows a 4:1 advantage. How would you get
a HUGE mechanical advantage, like 1000:1 ? (Phys 009 topic.)





















A spring-loaded toy dart gun is used to shoot a dart straight up in
the air, and the dart reaches a maximum height of 8 m. The same
dart is shot straight up a second time from the same gun, but this
time the spring is compressed only half as far before firing. How far
up does the dart go this time (neglecting friction)?

(A) 1 m

(B) 2 m

(C) 4 m

(D) 8 m

(E) 16 m

(F) 32 m



(Consider work done by whatever external force is causing the
object’s velocity to change.)



Stretching a certain spring 0.10 m from its equilibrium length
requires 10 J of work. How much more work does it take to stretch
this spring an additional 0.10 m from its equilibrium length?

(A) No additional work

(B) An additional 10 J

(C) An additional 20 J

(D) An additional 30 J

(E) An additional 40 J



A block initially at rest is allowed to slide down a frictionless ramp
and attains a speed v at the bottom. To achieve a speed 2v at the
bottom, how many times as high must a new ramp be?

(A) 1

(B) 1.414

(C) 2

(D) 3

(E) 4

(F) 5

(G) 6



At the bowling alley, the ball-feeder mechanism must exert a force
to push the bowling balls up a 1.0 m long ramp. The ramp leads
the balls to a chute 0.5 m above the base of the ramp. About how
much force must be exerted on a 5.0 kg bowling ball?

(A) 200 N

(B) 100 N

(C) 50 N

(D) 25 N

(E) 5.0 N

(F) impossible to determine.



Suppose you drop a 1 kg rock from a height of 5 m above the
ground. When it hits, how much force does the rock exert on the
ground? (Take g ≈ 10 m/s2.)

(A) 0.2 N

(B) 5 N

(C) 50 N

(D) 100 N

(E) impossible to determine without knowing over what distance
the rock slows when it impacts the ground.



The velocity of an object as a function of time is shown. Over
what time intervals is the work done on the object (a) positve,
(b) negative, (c) zero? Hint: make a table showing sign of
acceleration (hence sign of net force), sign of displacement, and
sign of their product, for each segment. (Consider work done by
whatever external force is causing the object’s velocity to change.)



From a bridge at initial height h above the water, I release from
rest an object of mass m which is attached to a “bungee cord” (a
spring) of relaxed length `0 spring constant k . Which equation
correctly expresses, assuming that no mechanical energy is
dissipated into heat, the speed vf of the object when it reaches the
water surface? (One end of the bungee cord is tied to the bridge.
The cord is initially slack does not begin to stretch until the object
has fallen a distance equal to the cord’s relaxed length.)

(A) mg = kh

(B) mg = k (h − `0)

(C) mgh + 1
2 mv 2

f = 1
2 kh2

(D) mgh + 1
2 mv 2

f = 1
2 k (h − `0)2

(E) mgh = 1
2 mv 2

f + 1
2 kh2

(F) mgh = 1
2 mv 2

f + 1
2 k (h − `0)2



A motor lifts an object of mass m at constant upward velocity
vy = dy/dt. How much power (work per unit time) does the
motor supply?

(A) power = mgvy

(B) power = mgy

(C) power = 1
2 mv 2

y

(D) power = 1
2 mv 2

y + mgy

(E) power = d
dt

(
1
2 mv 2

y + mgy
)

(F) (A) and (E) are both correct.

(G) (B) and (E) are both correct.



A motor lifts an object of mass m at constant upward
acceleration ay = dvy/dt. How much power (work per unit time)
does the motor supply?

(A) power = mgvy

(B) power = m(ay + g)vy

(C) power = 1
2 mv 2

y

(D) power = 1
2 mv 2

y + mgy

(E) power = d
dt

(
1
2 mv 2

y + mgy
)

(F) (A) and (E) are both correct.

(G) (B) and (E) are both correct.



An object is said to be in stable equilibrium if a displacement in
either direction requires positive work to be done on the object by
an external force. Let’s suppose that there is some potential
energy associated with every position of the object, i.e. there is a
potential energy curve U(x), where x is the object’s position. How
do you expect U(x) to change as you move the object away (in
either direction) from its position of stable equilibrium?

(A) When displacing the object away from its equilibrium position,
the positive work done (on the object plus its environment) by
the external force causes a positive change in the potential
energy function U(x). So U(x) must have a local minimum at
the object’s stable equilibrium position.

(B) U(x) must have a local maximum at the object’s stable
equilibrium position.

(C) The derivative dU(x)/dx must have a local minimum at the
object’s stable equilibrium position.

(D) The derivative dU(x)/dx must be zero at the object’s stable
equilibrium position.

(E) Both (A) and (D) are true.



Chapter 9 reading question

2. When you stand up from a seated position, you push down with
your legs. So then do you do negative work when you stand up?

“In this situation, we have 2 systems. Firstly, in the system of just
the person, the action of standing up will result in a loss of internal
or chemical energy, thereby resulting in a loss of system energy and
hence positive work (BY the system) [which implies negative work
done ON the system, by Earth’s gravitational force]. For the
system of the person and Earth, the action of standing up
increases the [system’s] potential energy at the expense of [the
person’s] internal [food] energy. In this situation, there is no
change in system energy and therefore no work is done.”



Reading question 2 had no really simple answer

When you stand up from a seated position, you push down with your

legs. Does this mean you do negative work when you stand up?

Suppose “system” = me + Earth + floor + chair

I ∆K = 0

I ∆U = mg (∆x)my c.o.m. > 0

I ∆Ethermal = 0 (debatable but irrelevant)

I ∆Esource = −mg (∆x)my c.o.m. < 0

I W = 0

There are no external forces. Everything of interest is inside the
system boundary.



Let’s try choosing a different “system.”

When you stand up from a seated position, you push down with your

legs. Does this mean you do negative work when you stand up?

Suppose “system” = me + floor + chair

I ∆K = 0

I ∆U = 0 (UG undefined if Earth not in system)

I ∆Ethermal = 0 (debatable but irrelevant)

I ∆Esource = −mg (∆x)my c.o.m. < 0

I W = −mg (∆x)my c.o.m. < 0

External gravitational force, exerted by Earth on me, does negative
work on me. Point of application of this external force is my
body’s center of mass. Force points downward, but displacement is
upward. W < 0. System’s total energy decreases.



Let’s try answering a slightly different question.

When a friend stands me up from a chair (e.g. my knees are weak

today), does my friend do positive or negative work?

Suppose “system” = me + Earth + floor + chair

I ∆K = 0

I ∆U = mg (∆x)my c.o.m. > 0

I ∆Ethermal = 0 (debatable but irrelevant)

I ∆Esource = 0

I W = mg (∆x)my c.o.m. > 0

My friend applies an upward force beneath my arms. The point of
application of force is displaced upward.



Let’s include my friend as part of “the system.”

When a friend stands me up from a chair (e.g. my knees are weak

today), does my friend do positive or negative work?

Suppose “system” = me + Earth + floor + chair + friend

I ∆K = 0

I ∆U = mg (∆x)my c.o.m. > 0

I ∆Ethermal = 0 (debatable but irrelevant)

I ∆Esource = −mg (∆x)my c.o.m. < 0

I W = 0

There is no external force. Everything is within the system.



Back to the original reading question
When you stand up from a seated position, you push down with your

legs. Does this mean you do negative work when you stand up?

I think the work done ON the system BY my legs is either
positive (if my legs are considered “external” to the
me+Earth+floor system and are supplying the energy to lift me) or
zero (if my legs are part of the system).

Remember the one way we got a negative answer: In the case in
which Earth was not part of the system, we found that the external
force of Earth’s gravity did negative work on me. But I was
pushing Earth downward, away from me. I lost energy. So even in
this case (where the work done on me was negative), the work
done by me was positive.

Key point: what you call “work” depends on how you define “the
system.”



A few key ideas from Chapters 8 (force) and 9 (work)
Impulse (i.e. momentum change) delivered by external force:

force =
d(momentum)

dt
⇔ ~J =

∫
~Fexternal dt

External force exerted ON system:

force =
d(work)

dx
⇔ W =

∫
Fx dx

Force exerted BY spring, gravity, etc.:

force = −d(potential energy)

dx

∆Esystem = flow of energy into system = work done ON system:

work = ∆(energy) = ∆K + ∆U + ∆Esource + ∆Ethermal

Notice that work : energy :: impulse : momentum



Some equation sheet entries for Chapters 8+9
http://positron.hep.upenn.edu/physics8/files/equations.pdf

Work (external, nondissipative, 1D):

W =

∫
Fx(x) dx

which for a constant force is

W = Fx ∆x

Power is rate of change of energy:

P =
dE

dt

Constant external force, 1D:

P = Fxvx

G.P.E. near earth’s surface:

Ugravity = mgh

Force of gravity near earth’s surface
(force is −dUgravity

dx ):

Fx = −mg

Potential energy of a spring:

Uspring =
1

2
k(x − x0)2

Hooke’s Law (force is −dUspring

dx ):

Fby spring ON load = −k(x − x0)

http://positron.hep.upenn.edu/physics8/files/equations.pdf


video segment break

I begin video preceding ws10



Physics 8 — Monday, September 30, 2019

I You probably noticed by now that I try my best to motivate
you to spend time each week reading, working checkpoints,
and solving problems. I give you a significant amount of work
to do. By doing all of the work, you will learn a lot, and you
will do very well in the course. That’s the bargain we offer.



Things to understand before studying architectural structures:

I forces X (but we will continue to use, all term!)

I vectors — (now)

I torques — (chapter 12)

I The next few chapters (10,11,12) are the most difficult
material in the course. We will slow down for them. After
that, the fun begins: we can apply our knowledge of forces
(ch8), vectors (ch10), and torque (ch12) to structures.



A Chapter 10 reading question:

Can an object be accelerated without changing its kinetic energy?

Answer: Yes. You can change an object’s direction without
changing its speed. So its velocity can change without changing its
kinetic energy.

Over a finite time interval, this is easy to arrange.

Over an infinitessimal time interval, if the acceleration vector is
perpendicular to the velocity vector, then direction changes, but
speed does not. This will be important in Chapter 11!



Let’s start with the familiar “ball-popper” cart

New (ch10): use two coordinate axes. In most cases, make y -axis
point upward (vertical), and x-axis point to the right (horizontal).

Vertical equation of motion (ay = −g is constant):

y = yi + vi ,y t − 1

2
gt2

vy = vi ,y − gt

Horizontal equation of motion (vx = vi ,x is constant):

x = xi + vi ,x t

If you let xi = 0 (simpler) and solve horizontal eqn. for t, you get

t =
x

vi ,x

Now plug this into the equation for y . . .



y = yi + vi ,y t − 1

2
gt2

Now plug t = x
vi,x

into the equation for y :

y = yi + vi ,y

(
x

vi ,x

)
− 1

2
g

(
x

vi ,x

)2

Separate out the constants to see that y(x) is a parabola:

y = yi +

(
vi ,y
vi ,x

)
x −

(
g

2v 2
i ,x

)
x2

(You can “see” this either by drawing a graph or by happening to
remember from math that y = Ax2 + Bx + C is a parabola.)

Let’s draw and “decompose” the velocity vector at the moment
the ball is launched from the cart.



Now decompose into x and y components . . .



Notice (blackboard) that adding the two components together
gives back the original vector.



Which graph best represents the acceleration vector ~a and velocity
vector ~v the instant after the ball is launched from the cart?



Which graph best represents the acceleration vector ~a and velocity
vector ~v at the top of the ball’s trajectory?



Which graph best represents the acceleration vector ~a and velocity
vector ~v the instant before the ball lands in the cart?



Which path best represents the trajectory of a cantaloupe thrown
horizontally off a bridge? (What’s wrong with the other two?)
(Next slide zooms in on corner.)



zoom in on top-left corner (launch position)

Which path best represents the trajectory of a cantaloupe thrown
horizontally off a bridge? (What’s wrong with the other two?)



Two steel balls are released simultaneously from the same height
above the ground.

One ball is simply dropped (zero initial velocity).

The other ball is thrown horizontally (initial velocity is nonzero,
but is purely horizontal).

Which ball will hit the ground first?

(A) The ball thrown horizontally will hit the ground first.

(B) The ball released from rest will hit the ground first.

(C) Both balls will hit the ground at the same time.

(I should draw a picture of both trajectories on the board.)



A story . . .

Once upon a time, a monkey — who happened to be easily
frightened by loud noises — was minding his own business, clinging
to a tree branch with one hand, and with the other hand enjoying
the bananas he’d stored away after solving HW4 XC problem #7.



Look out . . .



Now let’s move on to two questions of much more
practical significance:

1. Should the “ecologist” shoot the “tranquilizer
dart” at Nim Chimpsky, or at Mr. Bill? (She needs
to collect a harmless DNA sample from one of these
two characters for the Primate Genome Project.)

(A) Tranquilize Nim Chimpsky! (His DNA sample
may explain why he was smart enough to learn
all those words of American Sign Language.)

(B) Tranquilize Mr. Bill! (If you manage to find any
real DNA in his sample, the result will definitely
be a publishable paper, if not a Nobel Prize.)



(A) study Nim Chimpsky.
(B) study Mr. Bill.



Now let’s move on to two questions of much more
practical significance:

1. Should the “ecologist” shoot the “tranquilizer
pellet” at Nim Chimpsky, or at Mr. Bill?

2. It takes the pellet some time to travel across the
width of the room.

I In that time interval, gravity will cause
Nim/Bill to fall.

I So where should I aim the pea-shooter so
that the pellet hits Nim/Bill as he drops?

Before you answer, let’s explain in detail how this
game works, why Nim/Bill lets go of the tree, what
each trajectory will look like, etc.





What shall I aim for?

(A) Aim high, because the steel pellet is so much heavier than
Mr. Bill, and will be pulled down more by gravity.

(B) Aim low, because Mr. Bill will be falling while the pellet
travels.

(C) Aim directly for Mr. Bill. This is clearly what you would do if
gravity were absent. The presence of gravity will affect
Mr. Bill and the pellet in the same way (they experience the
same downward gravitational acceleration), so aiming directly
for Mr. Bill will result in a direct hit.

(D) How much below Mr. Bill you need to aim depends on the
speed with which you fire the pellet, because the time that it
takes the pellet to reach Mr. Bill will depend on how fast the
pellet is shot.

(I’m not going to give away my own answer yet!)





Try writing equations for xBill(t), yBill(t), xpellet(t), ypellet(t) , in

terms of xi , yi , θ (shown on diagram) and initial pellet speed vi .





Anybody want to change his/her vote?

(A) Aim high, because the steel pellet is so much heavier than
Mr. Bill, and will be pulled down more by gravity.

(B) Aim low, because Mr. Bill will be falling while the pellet
travels.

(C) Aim directly for Mr. Bill. This is clearly what you would do
if gravity were absent. The presence of gravity will affect
Mr. Bill and the pellet in the same way, so aiming directly for
Mr. Bill will result in a direct hit.

(D) How much below Mr. Bill you need to aim depends on the
speed with which you fire the pellet, because the time that it
takes the pellet to reach Mr. Bill will depend on how fast the
pellet is shot.



Mr. Bill starts from rest at (xi , yi ). Pellet starts at (0, 0) with
initial velocity (vi cos θ, vi sin θ). Equations of motion:

xbill = xi

ybill = yi −
1

2
gt2

xpellet = vi cos θ t

ypellet = vi sin θ t − 1

2
gt2

When does pellet cross Mr. Bill’s downward path?

xpellet = xbill ⇒ vi cos θ t = xi

t =
xi

vi cos θ



Plugging in t =
(

xi
vi cos θ

)
:

xbill = xi

xpellet = vi cos θ

(
xi

vi cos θ

)
= xi

ybill = yi −
1

2
g

(
xi

vi cos θ

)
2

ypellet = vi sin θ

(
xi

vi cos θ

)
− 1

2
g

(
xi

vi cos θ

)
2

What is vertical separation between Mr. Bill and the pellet at the
instant when xpellet = xbill = xi ?

ybill − ypellet = yi − vi sin θ

(
xi

vi cos θ

)
ybill − ypellet = yi − xi tan θ = yi − yi = 0



Anybody want to change his/her vote?

(A) Aim high, because the steel pellet is so much heavier than
Mr. Bill, and will be pulled down more by gravity.

(B) Aim low, because Mr. Bill will be falling while the pellet
travels.

(C) Aim directly for Mr. Bill. This is clearly what you would do
if gravity were absent. The presence of gravity will affect
Mr. Bill and the pellet in the same way, so aiming directly for
Mr. Bill will result in a direct hit.

(D) How much below Mr. Bill you need to aim depends on the
speed with which you fire the pellet, because the time that it
takes the pellet to reach Mr. Bill will depend on how fast the
pellet is shot.



Oh noooo . . .

https://en.wikipedia.org/wiki/Mr._Bill

https://en.wikipedia.org/wiki/Mr._Bill


Physics 8 — Wednesday, October 2, 2019



From a height h above the ground, I throw a ball with an initial
velocity that is nonzero only in the horizontal direction: vxi > 0,
vyi = 0. How do I determine how long it takes to reach the
ground?

(A) h + vxi t = 0

(B) h + vxi t − 1
2 gt2 = 0

(C) h + vyi t = 0

(D) h − 1
2 gt2 = 0



From a height h above the ground, I throw a ball with an initial
velocity that is nonzero only in the horizontal direction: vxi > 0,
vyi = 0. If the ball’s initial x coordinate is xi = 0, how do I
determine the x coordinate where the ball hits the ground?

(A) xf = h + vxi t − 1
2 gt2, with t given on the previous page

(B) xf = h + vxi t − 1
2 gt2, with t = 0

(C) xf = xi + vxi t, with t given on the previous page

(D) xf = xi + vxi t, with t = 0

(E) yf = yi + vxi t, with t given on the previous page

(F) yf = yi + vxi t, with t = 0



From a height h above the ground, I throw a ball with an initial
velocity that is nonzero only in the horizontal direction: vxi > 0,
vyi = 0. How do I determine the x and y coordinates of the ball’s
velocity, vx and vy , at the instant before the ball hits the ground?



We stopped before we got here.



Physics 8 — Friday, October 4, 2019



Let’s quickly revisit free-body diagrams in 1D

You push on a crate, and it starts to move but you don’t. Draw a
free-body diagram for you and one for the crate. Then use the
diagrams and Newton’s third law of motion to explain why the
crate moves but you don’t.

(A) The force I exert on the crate is larger than the force the crate
exerts on me.

(B) The crate’s force on me is equal and opposite to my force on
the crate. The frictional force between my shoes and the floor
is equal in magnitude to the crate’s push on me, while the
frictional force between the crate and the floor is smaller than
my push on the crate.

(C) The crate and I exert equal and opposite forces on each other,
but I don’t move because I am much more massive than the
crate.



(free-body diagrams in one dimension)

If the crate and I were both standing on an ice rink, then it seems
clear that we would both start to move. If the crate and I were
both bolted to the floor, then it seems clear that neither one of us
would start to move. So the grip of the floor’s friction on my feet
must be greater in magnitude than the grip of the floor’s friction
on the crate.

Let’s say that I push to the right on the crate with a force
~Fme,crate, so the crate pushes to the left on me with a force
~Fcrate,me = −~Fme,crate. Meanwhile, the floor pushes to the right on

me with a force ~Ffloor,me, and the floor pushes (by a smaller

amount) to the left on the crate with a force ~Ffloor,crate.

It is reasonable that |~Ffloor,crate| < |~Ffloor,me|, because the bottom
of the crate is wood, while the soles of my shoes are rubber.



(free-body diagrams in one dimension)



Block sliding down inclined plane: try drawing free-body diagram.
Suppose some kinetic friction is present, but block still accelerates
downhill. Try drawing this with a neighbor, one step ahead of me.

First: let’s draw ~FG
E ,b for gravity.



Add gravity vector

Next decompose ~FG
E ,b into components ‖ and ⊥ to surface.



Decompose gravity vector: ‖ and ⊥ to surface

Next: add contact force “normal” (⊥) to surface.



Now add contact force “normal” (⊥) to surface

Next: add friction.



Now add friction (‖ to surface, opposing relative motion)



The block shown in this
free-body diagram is

(A) at rest.

(B) sliding downhill at
constant speed.

(C) sliding downhill and
speeding up.

(D) sliding downhill and
slowing down.

(E) sliding uphill and
speeding up.

(F) sliding uphill and
slowing down.



How would I change this free-body diagram . . .

if the block were at rest?



How would I change this free-body diagram . . .

if the block were sliding downhill at constant speed?



How would I change this free-body diagram . . .

if the block were sliding downhill and slowing down?



How would I change this free-body diagram . . .

if the block were sliding uphill and slowing down?



Another Chapter 10 reading question:

You’ve slammed on the brakes, and your car is skidding to a stop
on a steep and slippery winter road. Other things being equal, will
the car come to rest more quickly if it is traveling uphill or if it is
traveling downhill? Why? (Consider FBD for each case.)

(We stopped on this page. Let’s look again at FBDs then go on.)



A Ch10 problem that may not fit into HW6

The coefficient of static friction of tires on ice is about 0.10.
(a) What is the steepest driveway on which you could park under
those circumstances? (b) Draw a free-body diagram for the car
when it is parked (successfully) on an icy driveway that is just a
tiny bit less steep than this maximum steepness. [We might want
to do (b) before we do (a).]



A Ch10 problem that may not fit into HW6

A fried egg of inertia m slides (at constant speed) down a Teflon
frying pan tipped at an angle θ above the horizontal. (a) Draw the
free-body diagram for the egg. Be sure to include friction.
(b) What is the “net force” (i.e. the vector sum of forces) acting
on the egg? (c) How do these answers change if the egg is instead
speeding up as it slides?
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If I gently step on my car’s accelerator pedal, and the car starts to
move faster (without any screeching sounds), the frictional force
between the road and the rubber tire surface that causes my car to
accelerate is

(A) static friction.

(B) kinetic friction.

(C) normal force.

(D) gravitational force.

(E) there is no frictional force between road and tire.



If I slam down on my car’s accelerator pedal, and the car
screeches forward noisily like a drag-race car, the frictional force
between the road and the rubber tire surface that causes my car to
accelerate is

(A) static friction.

(B) kinetic friction.

(C) normal force.

(D) gravitational force.

(E) there is no frictional force between road and tire.



Why do modern cars have anti-lock brakes?

(A) because the pumping action of the anti-lock brake mechanism
keeps the brake pads from getting too hot.

(B) because pulsing the brakes on and off induces kinetic friction,
which is preferable to static friction.

(C) because the cofficient of static friction is larger than the
coefficient of kinetic friction, so you stop faster if your wheels
roll on the ground than you would if your wheels were
skidding on the ground.

(D) because the weird pulsating sensation you feel when the
anti-lock brakes engage is fun and surprising!



(photo credit: Bill Berner)



Static friction and kinetic (sometimes confusingly called “sliding”)
friction:

F Static ≤ µS F Normal

F Kinetic = µK F Normal

“normal” & “tangential” components are ⊥ to and ‖ to surface

Static friction is an example of what physicists call a “force of
constraint” and engineers call a “reaction force.” In most cases,
you don’t know its magnitude until you solve for the other forces in
the problem and impose the condition that ~a = ~0. (An exception is
if we’re told that static friction “just barely holds on / just barely
lets go,” i.e. has its maximum possible value.)





I Steel on steel µK is about half that of rubber on concrete,
and much less than that of µS for rubber on concrete.

I So a train can take a while to skid to a stop!

I Even more so if the tracks are wet: µK ≈ 0.1

I At µ = 0.1 on level ground: 360 m to stop from 60 mph.

I At µ = 0.1 on 6◦ slope: not possible to stop.



A car of mass 1000 kg travels at constant speed 20 m/s on dry,
level pavement. The friction coeffs are µk = 0.8 and µs = 1.2.
What is the normal force exerted by the road on the car?

(A) 1000 N downward

(B) 1000 N upward

(C) 1000 N forward

(D) 1000 N backward

(E) 9800 N downward

(F) 9800 N upward

(G) 11800 N downward

(H) 11800 N upward



A car of mass 1000 kg is traveling (in a straight line) at a constant
speed of 20 m/s on dry, level pavement, with the cruise control
engaged to maintain this speed. The friction coefficients are
µk = 0.8 and µs = 1.2. The tires roll on the pavement without
slipping. What is the frictional force exerted by the road on the
car? (Let’s use g ≈ 10 m/s2 for simplicity here.)

(A) 8000 N backward

(B) 8000 N forward

(C) 8000 N upward

(D) 10000 N backward

(E) 10000 N forward

(F) 12000 N backward

(G) 12000 N forward

(H) It points forward, must have magnitude ≤ 12000 N, and has
whatever value is needed to counteract air resistance.



A car of mass 1000 kg is initially traveling (in a straight line) at
20 m/s on dry, level pavement, when suddenly the driver jams on
the (non-anti-lock) brakes, and the car skids to a stop with its
wheels locked. The friction coefficients are µk = 0.8 and µs = 1.2.
What is the frictional force exerted by the road on the car? (Let’s
use g ≈ 10 m/s2 for simplicity here.)

(A) 8000 N backward

(B) 8000 N forward

(C) 8000 N upward

(D) 10000 N backward

(E) 10000 N forward

(F) 12000 N backward

(G) 12000 N forward

(H) It points forward, must have magnitude ≤ 12000 N, and has
whatever value is needed to counteract air resistance.



Suppose that for rubber on dry concrete, µk = 0.8 and µs = 1.2.
If a car of mass m traveling at initial speed vi on a level road jams
on its brakes and skids to a stop with its wheels locked, how do I
solve for the length L of the skid marks? (Let’s use g ≈ 10 m/s2

for simplicity here.)

(A) use v 2
f = v 2

i + 2aL with vf = 0 and a = −2.0 m/s2

(B) use v 2
f = v 2

i + 2aL with vf = 0 and a = −4.0 m/s2

(C) use v 2
f = v 2

i + 2aL with vf = 0 and a = −6.0 m/s2

(D) use v 2
f = v 2

i + 2aL with vf = 0 and a = −8.0 m/s2

(E) use v 2
f = v 2

i + 2aL with vf = 0 and a = −10.0 m/s2

(F) use v 2
f = v 2

i + 2aL with vf = 0 and a = −12.0 m/s2

(G) use v 2
f = v 2

i + 2aL with vf = 0 and a = −14.0 m/s2



Suppose that for rubber tires on dry, level pavement, the friction
coefficients are µk = 0.8 and µs = 1.2. If you assume that the
forces between the ground and the tires are the same for all four
tires (4-wheel drive, etc.), what is a car’s maximum possible
acceleration for this combination of tires and pavement? (Let’s use
g ≈ 10 m/s2 for simplicity here.)

(A) 1.0 m/s2

(B) 5.0 m/s2

(C) 8.0 m/s2

(D) 10.0 m/s2

(E) 12.0 m/s2
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An object “O” of mass m slides down an inclined surface “S” at
constant velocity. What is the magnitude of the (kinetic)
frictional force F k

so exerted by the surface on the object?

(A) F k
so = mg

(B) F k
so = mg sin θ

(C) F k
so = mg cos θ

(D) F k
so = mg tan θ

(E) F k
so = µkmg

(F) F k
so = µkmg sin θ

(G) F k
so = µkmg cos θ

(H) F k
so = µkmg tan θ



An object “O” of mass m slides down an inclined surface “S” at
constant velocity. What is the magnitude of the gravitational
force F g

eo exerted by Earth on the object?

(A) F g
eo = mg

(B) F g
eo = mg sin θ

(C) F g
eo = mg cos θ

(D) F g
eo = mg tan θ

(E) F g
eo = µkmg

(F) F g
eo = µkmg sin θ

(G) F g
eo = µkmg cos θ

(H) F g
eo = µkmg tan θ



An object “O” of mass m slides down an inclined surface “S” at
constant velocity. Let the x-axis point downhill. What is the
magnitude of the downhill (tangential) component F g

eo,x of the
gravitational force exerted by Earth on the object?

(A) F g
eo,x = mg

(B) F g
eo,x = mg sin θ

(C) F g
eo,x = mg cos θ

(D) F g
eo,x = mg tan θ

(E) F g
eo,x = µkmg

(F) F g
eo,x = µkmg sin θ

(G) F g
eo,x = µkmg cos θ

(H) F g
eo,x = µkmg tan θ



An object “O” of mass m slides down an inclined surface “S” at
constant velocity. What is the magnitude of the normal force F n

so

exerted by the surface on the object?

(A) F n
so = mg

(B) F n
so = mg sin θ

(C) F n
so = mg cos θ

(D) F n
so = mg tan θ

(E) F n
so = µkmg

(F) F n
so = µkmg sin θ

(G) F n
so = µkmg cos θ

(H) F n
so = µkmg tan θ



Since object “O” slides down surface “S” at constant velocity, the
forces on O must sum vectorially to zero. How do I express this
fact for the forces acting along the downhill (tangential) axis?

(A) µkmg = mg cos θ

(B) µkmg = mg sin θ

(C) µkmg cos θ = mg

(D) µkmg sin θ = mg

(E) µkmg cos θ = mg sin θ

(F) µkmg sin θ = mg cos θ

(G) mg sin θ = mg cos θ



Suppose friction holds object “O” at rest on surface “S.” Which
statement is true?

(A) mg sin θ = F s
so = µkmg cos θ

(B) mg sin θ = F s
so = µsmg cos θ

(C) mg sin θ = F s
so ≤ µkmg cos θ

(D) mg sin θ = F s
so ≤ µsmg cos θ

(E) mg cos θ = F s
so = µkmg sin θ

(F) mg cos θ = F s
so = µsmg sin θ

(G) mg cos θ = F s
so ≤ µkmg sin θ

(H) mg cos θ = F s
so ≤ µsmg sin θ



Suppose friction holds object “O” at rest on surface “S.” Then I
gradually increase θ until the block just begins to slip. Which
statement is true at the instant when the block starts slipping?

(A) mg sin θ = F s
so = µkmg cos θ

(B) mg sin θ = F s
so = µsmg cos θ

(C) mg sin θ = F s
so ≤ µkmg cos θ

(D) mg sin θ = F s
so ≤ µsmg cos θ

(E) mg cos θ = F s
so = µkmg sin θ

(F) mg cos θ = F s
so = µsmg sin θ

(G) mg cos θ = F s
so ≤ µkmg sin θ

(H) mg cos θ = F s
so ≤ µsmg sin θ



Friction on inclined plane

Why do I “cross off” the downward gravity arrow?



Take x-axis to be downhill, y -axis to be upward ⊥ from surface.

~FG
⊥ = −mg cos θ ĵ , ~FN = +mg cos θ ĵ

~FG
‖ = +mg sin θ î

If block is not sliding then friction balances downhill gravity:

~F S = −mg sin θ î

(I’ll skip this slide, but it’s here for reference.)



Magnitude of “normal” force (“normal” is a synonym for
“perpendicular”) between surfaces is

FN = mg cos θ

Magnitude of static friction must be less than maximum:

F S ≤ µSFN = µS mg cos θ

Block begins sliding when downhill component of gravity equals
maximum magnitude of static friction . . .



Block begins sliding when downhill component of gravity equals
maximum magnitude of static friction:

µS mg cos θ = mg sin θ

µS =
mg sin θ

mg cos θ

µS = tan θ



A Ch10 problem that may not fit into HW6

The coefficient of static friction of tires on ice is about 0.10.
(a) What is the steepest driveway on which you could park under
those circumstances? (b) Draw a free-body diagram for the car
when it is parked (successfully) on an icy driveway that is just a
tiny bit less steep than this maximum steepness. [We might want
to do (b) before we do (a).]

Answering part (a) starts by expressing (in math) which statement:

(A) (total gravitational force on car) equals (kinetic friction)

(B) (total gravitational force on car) equals (largest possible value
of static friction)

(C) (downhill component of gravity) equals (kinetic friction)

(D) (downhill component of gravity) equals (largest possible value
of static friction)



A heavy crate has plastic skid
plates beneath it and a tilted
handle attached to one side.
Which requires a smaller force
(directed along the diagonal
rod of the handle) to move the
box? Why?

(A) Pushing the crate is easier
than pulling.

(B) Pulling the crate is easier
than pushing.

(C) There is no difference.



find tension in rope

Step two: what is the frictional force exerted by the floor on the
box (which is sliding across the floor at constant speed)?

(A) FK = µK (mg − T sin θ)

(B) FK = µK (mg − T cos θ)

(C) FK = µS(mg − T sin θ)

(D) FK = µS(mg − T cos θ)

(E) FK = (mg − T sin θ)

(F) FK = (mg − T cos θ)

We stopped here.



A Ch10 problem that may not fit into HW6

Calculate ~C · (~B − ~A) if ~A = 3.0̂i + 2.0ĵ , ~B = 1.0̂i − 1.0ĵ , and
~C = 2.0̂i + 2.0ĵ . Remember that there are two ways to compute a
dot product—choose the easier method in a given situation: one
way is ~P · ~Q = |~P||~Q| cosϕ, where ϕ is the angle between vectors
~P and ~Q, and the other way is ~P · ~Q = PxQx + PyQy .



A Ch10 problem that may not fit into HW6

A child rides her bike 1.0 block east and then
√

3 ≈ 1.73 blocks
north to visit a friend. It takes her 10 minutes, and each block is
60 m long. What are (a) the magnitude of her displacement,
(b) her average velocity (magnitude and direction), and (c) her
average speed?



A Ch10 problem that may not fit into HW6

A fried egg of inertia m slides (at constant speed) down a Teflon
frying pan tipped at an angle θ above the horizontal. [This only
works if the angle θ is just right.] (a) Draw the free-body diagram
for the egg. Be sure to include friction. (b) What is the “net force”
(i.e. the vector sum of forces) acting on the egg? (c) How do
these answers change if the egg is instead speeding up as it slides?



Physics 8 — Monday, October 14, 2019



Example (tricky!) problem

A woman applies a constant force to pull a 50 kg box across a
floor at constant speed. She applies this force by pulling on a
rope that makes an angle of 37◦ above the horizontal. The friction
coefficient between the box and the floor is µk = 0.10.

(a) Find the tension in the rope.

(b) How much work does the woman do in moving the box 10 m?



free-body diagram for box

What are all of the forces acting on the box? Try drawing your
own FBD for the box. It’s tricky!

(I should redraw the RHS of this diagram on the board.)



find tension in rope

Step one: If T is the tension in the rope, then what is the normal
force (by floor on box)?

(A) FN = mg

(B) FN = mg + T cos θ

(C) FN = mg + T sin θ

(D) FN = mg − T cos θ

(E) FN = mg − T sin θ



find tension in rope

Step two: what is the frictional force exerted by the floor on the
box (which is sliding across the floor at constant speed)?

(A) FK = µK (mg − T sin θ)

(B) FK = µK (mg − T cos θ)

(C) FK = µS(mg − T sin θ)

(D) FK = µS(mg − T cos θ)

(E) FK = (mg − T sin θ)

(F) FK = (mg − T cos θ)



find tension in rope

Step three: how do I use the fact that the box is moving at
constant velocity (and hence is not accelerating)?

(A) T = FK = µK (mg − T sin θ)

(B) T cos θ = FK = µK (mg − T sin θ)

(C) T sin θ = FK = µK (mg − T sin θ)



solution (part a): find tension in rope

Force by rope on box has upward vertical component T sin θ. So the

normal force (by floor on box) is FN = mg − T sin θ .

Force of friction is FK = µK (mg − T sin θ) . To keep box sliding at

constant velocity, horizontal force by rope on box must balance FK .

T cos θ = FK = µK (mg − T sin θ) ⇒ T =
µKmg

cos θ + µK sin θ

This reduces to familiar T = µKmg if θ = 0◦ (pulling horizontally) and
even reduces to a sensible T = mg if θ = 90◦ (pulling vertically).

Plugging in θ = 37◦, so cos θ = 4/5 = 0.80, sin θ = 3/5 = 0.60,

T =
(0.10)(50 kg)(9.8 m/s2)

(0.80) + (0.10)(0.60)
= 57 N



solution (part b): work done by pulling for 10 meters

In part (a) we found tension in rope is T = 57 N and is oriented
at an angle θ = 36.9◦ above the horizontal.

In 2D, work is displacement times component of force along
direction of displacement (which is horizontal in this case). So
the work done by the rope on the box is

W = ~Frb ·∆~rb
This is the dot product (or “scalar product”) of the force ~Frb (by
rope on box) with the displacement ∆~rb of the point of application
of the force.



In part (a) we found tension in rope is T = 57 N and is oriented
at an angle θ = 36.9◦ above the horizontal.

What is the work done by the rope on the box by pulling the box
across the floor for 10 meters? (Assume my arithmetic is correct.)

(In two dimensions, work is the dot product of the force ~Frb with
the displacement ∆~rb of the point of application of the force.)

(A) W = (10 m)(T ) = (10 m)(57 N) = 570 J

(B) W = (10 m)(T cos θ) = (10 m)(57 N)(0.80) = 456 J

(C) W = (10 m)(T sin θ) = (10 m)(57 N)(0.60) = 342 J

(D) W = (8.0 m)(T cos θ) = (8.0 m)(57 N)(0.80) = 365 J

(E) W = (8.0 m)(T sin θ) = (8.0 m)(57 N)(0.60) = 274 J



Repeat, now that we’ve analyzed this quantitatively

A heavy crate has plastic skid
plates beneath it and a tilted
handle attached to one side.
Which requires a smaller force
(directed along the diagonal
rod of the handle) to move the
box? Why?

(A) Pushing the crate is easier
than pulling.

(B) Pulling the crate is easier
than pushing.

(C) There is no difference.



Easier example (quickly, or skip)

How hard do you have to push a 1000 kg car (with brakes on, all
wheels, on level ground) to get it to start to slide? Let’s take
µS ≈ 1.2 for rubber on dry pavement.

F Normal = mg = 9800 N

F Static ≤ µSFN = (1.2)(9800 N) ≈ 12000 N

So the static friction gives out (hence car starts to slide) when
your push exceeds 12000 N.

How hard do you then have to push to keep the car sliding at
constant speed? Let’s take µK ≈ 0.8 for rubber on dry pavement.

F Kinetic = µKFN = (0.8)(9800 N) ≈ 8000 N



How far does your car slide on dry, level pavement if you jam on
the brakes, from 60 mph (27 m/s)?

FN = mg , FK = µKmg

a =? ∆x =?

(The math is worked out on the next slides, but we won’t go
through them in detail. It’s there for you to look at later.)



How far does your car slide on dry, level pavement if you jam on
the brakes, from 60 mph (27 m/s)?

FN = mg , FK = µKmg

a = −FK/m = −µKg = −(0.8)(9.8 m/s2) ≈ −8 m/s2

Constant force → constant acceleration from 27 m/s down to zero:

v 2
f = v 2

i + 2ax

x =
v 2
i

−2a
=

(27 m/s)2

2× (8 m/s2)
≈ 45 m

How much time elapses before you stop?

vf = vi + at ⇒ t =
27 m/s

8 m/s2
= 3.4 s



How does this change if you have anti-lock brakes (or good
reflexes) so that the tires never skid? Remember µS > µK . For
rubber on dry pavement, µS ≈ 1.2 (though there’s a wide range)
and µK ≈ 0.8. The best you can do is maximum static friction:

F S ≤ µSmg

a = −F S/m = −µSg = −(1.2)(9.8 m/s2) ≈ −12 m/s2

Constant force → constant acceleration from 27 m/s down to zero:

v 2
f = v 2

i + 2ax

x =
v 2
i

−2a
=

(27 m/s)2

2× (12 m/s2)
≈ 30 m

How much time elapses before you stop?

vf = vi + at ⇒ t =
27 m/s

15 m/s2
= 2.2 s

So you can stop in about 2/3 the time (and 2/3 the distance) if
you don’t let your tires skid. Or whatever µK/µS ratio is.



video segment break

I begin video preceding ws13 = mz11



Chapter 11: motion in a circle

I If you go around in a circle at constant speed, your velocity
vector is always changing direction.

I A change in velocity (whether magnitude, direction, or both)
requires acceleration.

I For motion in a circle of radius R at constant speed v

a =
v 2

R

I This is called centripetal acceleration, and points toward
the center of the circle.

I In the absence of a force (i.e. if vector sum of forces (if any)
is zero), there is no acceleration, hence no change in velocity.



You are looking down (plan view) as I spin a (blue) ball on a string
above my head in a circle at constant speed. The string breaks at
the instant shown below. Which picture depicts the subsequent
motion of the ball?



If the nut has mass m and the turntable is sitting idle, what is the
tension in the string?



What will happen when I start the turntable spinning?

(A) The nut will continue to hang down vertically.

(B) The nut will move inward somewhat, making some angle ϕ
w.r.t. the vertical axis.

(C) The nut will move outward somewhat, making some angle ϕ
w.r.t. the vertical axis.



What will happen if I spin the turntable faster? Let T be the
tension in the string.

(A) The nut will move farther outward. T sinϕ provides the
centripetal force mv/R2, while T cosϕ balances gravity mg .

(B) The nut will move farther outward. T cosϕ provides the
centripetal force mv/R2, while T sinϕ balances gravity mg .

(C) The nut will move farther outward. T sinϕ provides the
centripetal force mv 2/R, while T cosϕ balances gravity mg .

(D) The nut will move farther outward. T cosϕ provides the
centripetal force mv 2/R, while T sinϕ balances gravity mg .
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m~anut = ~F tension
s,nut + ~FG

E ,nut

0 = may = T cosϕ−mg

T cosϕ = mg

−mv 2

R
= max = −T sinϕ

T sinϕ

T cosϕ
= tanϕ =

mv 2/R

mg
=

v 2

gR



Now suppose that friction provides the centripetal force

Suppose that a highway offramp that I often use bends with a
radius of 20 meters. I notice that my car tires allow me (in good
weather) to take this offramp at 15 m/s without slipping. How
large does the offramp’s bending radius need to be for me to be
able to make the turn at 30 m/s instead?

(Assume that the frictional force between the road and my tires is
the same in both cases and that the offramp is level (horizontal),
i.e. not “banked.”)

(A) 5 meters

(B) 10 meters

(C) 20 meters

(D) 30 meters

(E) 40 meters

(F) 80 meters



Now suppose that friction provides the centripetal force

I If velocity gets too large, penny flies off of turntable, as
friction is no longer large enough to hold it in place.

I What if there are several pennies placed on the turntable at
several different radii?

I As I slowly increase the speed at which the turntable rotates,
do all of the pennies fly off at the same time?! Discuss!



If I put several pennies on the turntable at several different radii
and turn the turntable slowly enough that all pennies stay put,
which of the following statements is true?

(A) All pennies have the same velocity.

(B) All pennies make the same number of revolutions per second.

(C) All pennies have the same “angular velocity” ω = v/r , but r
will vary from penny to penny, so v will also vary.

(D) B and C are both true.

(E) A, B, and C are all true.



How can I best express the centripetal acceleration for each penny
on the turntable?

(A) a = v 2/r

(B) a = v 2/r = (rω)2/r = ω2r

(C) a is the same for all pennies on the turntable

(D) (A) and (B) are both true, but (B) is a more useful way to
describe what is happening on the turntable, because v varies
from penny to penny, while ω is the same for all pennies.

(E) (A), (B), and (C) are all true

(F) (A), (B), and (C) are all false



Now we know that the centripetal acceleration can be written
a = ω2r and varies with the radius of each penny. We also know
that static friction must provide the force mω2r to keep each
penny going in a circle. Can we predict which pennies will slide off
of the turntable first as I gradually increase the rotational velocity
of the turntable?

(A) The inside pennies will fly off first. This makes sense, because
(for a given speed v) your tires screech more when you go
around a turn with small radius than when you go around a
turn with large radius.

(B) The outside pennies will fly off first. This makes sense
because ω is the same for all pennies (v is not the same for all
pennies), but mω2r is largest for the outermost pennies.

(C) They all slide off at the same time.

(D) No way to predict.



What happens to the surface of this
liquid if I center the tank atop the
turntable and spin the turntable?
(You’ll have to make a leap of
intuition, by analogy with the spinning
nut-on-string, as we haven’t studied
fluids in this course.)

(A) The water surface will stay horizontal.

(B) The water surface is (when not spinning) perpendicular to the
vector (0,−g), i.e. it is horizontal. When spinning, the water
surface will be perpendicular to the vector (ω2r ,−g), with
slope = ω2r/g . So the surface will be triangular.

(C) The water surface is (when not spinning) perpendicular to the
vector (0,−mg), i.e. it is horizontal. When spinning, the
water surface will be perpendicular to the vector (ω2r ,−g),
with slope = ω2r/g . So the surface will be a parabola.

(D) All of the water will be stuck against the outer walls, as if
trying to escape from a salad spinner.



Why does a salad spinner work?

(A) The outer wall of the spinner provides the centripetal force
that pushes the lettuce toward the center of rotation, but the
water feels no such force, because it can flow through the
holes in the outer wall, thus separating water from lettuce.

(B) I really want to say “centrifugal force,” even though my
high-school teachers told me that there is really no such thing
as “centrifugal force” — it’s just a pseudo-force that one
perceives when observing from the confusing perspective of a
non-inertial reference frame.

(C) I guess you could say (A) or (B), but (A) is the way we’ve
learned to analyze the situation methodically from Earth’s
reference frame. We haven’t learned how to do calculations in
non-inertial reference frames.

(D) While the obvious answer is (A), I am so fascinated by the
pseudo-forces that appear in non-inertial reference frames that
I went and read the Wikipedia article on the Coriolis effect!

(We stopped after this.)



Physics 8 — Friday, October 18, 2019



Suppose I try to spin a pail of water in a vertical circle at constant
rotational speed ω, with the water a distance R from the pivot
point at my shoulder. So the water is moving at speed v = ωR.
(I’ll demonstrate first with an empty pail.) Will the water fall out
of the pail?

(A) The water will fall out while the pail is upside down, no
matter how fast you spin it around.

(B) The water will stay in the pail, no matter how slowly you spin
it around.

(C) The water will stay in the pail as long as you spin it fast
enough. “Fast enough” means v/R2 > g (or equivalently
ω2/R > g) when the bucket is upside-down.

(D) The water will stay in the pail as long as you spin it fast
enough. “Fast enough” means v 2/R > g (or equivalently
ω2R > g) when the bucket is upside-down.



The way to think about the water-in-bucket problem is

(A) The bottom surface of the bucket can both push and pull on
the water, as if the water and bucket were glued together.

(B) The bottom surface of the bucket can push on the water
(compressive force) but cannot pull on the water (no tensile
force). If the required centripetal acceleration is large enough
that the bucket must push on the water to keep it moving in a
circle (even when Earth’s gravity is pulling down on the
water), then the water will stay in the bucket.

(C) When the bucket is upside down, the bottom surface of the
bucket must “pull up” on the water to keep it inside the
bucket, or else the water will spill out.

(D) The water stays in the upside-down bucket if the outward
“centrifugal pseudo-force” (magnitude mv 2/R or mω2R) is at
least as large as the downward force of gravity.

(E) I think you could say (B) or (D), but we haven’t learned in
this course how to analyze the “pseudo-forces” that one
perceives when working in a non-inertial reference frame. So I
prefer (B), which uses the Earth reference frame.



Here is a good answer to the salad-spinner question: “The
explanation for the physics going on as the spinner does its job is
centripetal acceleration. The centripetal acceleration of an object
in circular motion at constant speed tells us that the vector sum of
the forces exerted on the object must be directed toward the center
of the circle, continuously adjusting the object’s direction. Without
this inward pointing vector sum of forces, the object would move in
a straight line. Centripetal force between the lettuce and the inside
of the spinner pushes the lettuce around in a circle. On the other
hand, the water can slip through the drain holes, so there’s nothing
to give it the same kind of push (and consequently there’s no
centripetal force to make it go in a circle). Thus, the lettuce
experiences centripetal force while the water doesn’t. In this way,
the spinner manages to separate the two as the lettuce goes round
in a circle and the water in a straight line through the holes.”

Several people pointed out that we expect the water to shoot out
tangentially from the spinner, since the water, once it loses contact
with the lettuce, should travel in a straight line in the absence of a
centripetal force. Need transparent salad spinner to verify!



How does this thing work? (Discuss!)

http://www.youtube.com/watch?v=oh9sn5gn2fk

Can you tell me what movie this is from?
(Hints: directed by Stanley Kubrick, story by A.C. Clarke.)

http://www.youtube.com/watch?v=oh9sn5gn2fk


An ice cube and a rubber ball are both placed at one end of a
warm cookie sheet, and the sheet is then tipped up. The ice cube
slides down with virtually no friction, and the ball rolls down
without slipping. Which one makes it to the bottom first?

(A) They reach the bottom at the same time.

(B) The ball gets there slightly faster, because the ice cube’s
friction (while very small) is kinetic and dissipates some
energy, while the rolling ball’s friction is static and does not
dissipate energy.

(C) The ice cube gets there substantially faster, because the ball’s
initial potential energy mgh gets shared between 1

2 mv 2

(translational) and 1
2 Iω2 (rotational), while essentially all of

the ice cube’s initial mgh goes into 1
2 mv 2 (translational).

(D) The ice cube gets there faster because the ice cube’s friction
is negligible, while the frictional force between the ball and the
cookie sheet dissipates the ball’s kinetic energy into heat.



A hollow cylinder and a solid cylinder both roll down an inclined
plane without slipping. Does friction play an important role in the
cylinders’ motion?

(A) No, friction plays a negligible role.

(B) Yes, (kinetic) friction dissipates a substantial amount of
energy as the objects roll down the ramp.

(C) Yes, (static) friction is what causes the objects to roll rather
than to slide. Without static friction, they would just slide
down, so there would be no rotational motion (if you just let
go of each cylinder from rest at the top of the ramp).



Why are people who write physics problems (e.g. about cylinders
rolling down inclined planes) so fond of the phrase “rolls without
slipping?”

(A) Because Nature abhors the frictional dissipation of energy.

(B) Because “rolls without slipping” implies that v = ωR, where
v is the cylinder’s (translational) speed down the ramp. This
lets you directly relate the rotational and translational parts of
the motion.

(C) No good reason. You could analyze the problem just as easily
if the cylinders were slipping somewhat while they roll.



How do I write the total kinetic energy of an object that has both
translational motion at speed v and rotational motion at speed ω?

(Note that the symbol I is a capital I (for rotational “inertia”) in
the sans-serif font that I use to make my slides. Sorry!)

(A) K = 1
2 mv 2

(B) K = 1
2 Iω2

(C) K = 1
2 I 2ω

(D) K = 1
2 mv 2 + 1

2 Iω2

(E) K = 1
2 mv 2 + 1

2 I 2ω

(F) K = 1
2 mω2 + 1

2 Iv 2

While you discuss, I’ll throw a familiar object across the
room, for you to look at now from the perspective of
Chapter 11 (and 12).



Sliding vs. rolling downhill:

For translational motion with no friction, vf =
√

2gh because

mghi =
1

2
mv 2

f

For rolling without slipping, we can write ωf = vf /R:

mghi =
1

2
mv 2

f +
1

2
Iω2

f

mghi =
1

2
mv 2

f +
1

2
I
(vf

R

)2

mghi =
1

2
mv 2

f

(
1 +

I

mR2

)
So the final velocity is slower (as are all intermediate velocities):

vf =

√
2gh

1 + I
mR2



A hollow cylinder and a solid cylinder both roll down an inclined
plane without slipping. Assuming that the two cylinders have the
same mass and same outer radius, which one has the larger
rotational inertia?

(A) The hollow cylinder has the larger rotational inertia, because
the material is concentrated at larger radius.

(B) The solid cylinder has the larger rotational inertia, because
the material is distributed over more area.

(C) The rotational inertias are the same, because the masses and
radii are the same.



The rolling object’s downhill acceleration is smaller by a factor(
1

1 + I
mR2

)

I = mR2 for hollow cylinder. 1
1+1 = 0.5

I = 2
3 mR2 for hollow sphere. 1

1+(2/3) = 0.60

I = 1
2 mR2 for solid cylinder. 1

1+(1/2) = 0.67

I = 2
5 mR2 for solid sphere. 1

1+(2/5) = 0.71

Using Chapter 11 ideas, we know how to analyze the rolling
objects’ motion using energy arguments. (With Chapter 12 ideas,
we will look again at the same problem using torque arguments,
and directly find each object’s downhill acceleration.)



Rotational inertia

For an extended object composed of several particles, with particle
j having mass mj and distance rj from the rotation axis,

I =
∑

j ∈ particles

mj r
2
j

For a continuous object like a sphere or a solid cylinder, you have
to integrate (or more often just look up the answer):

I =

∫
r 2 dm

If you rearrange the same total mass to put it at larger distance
from the axis of rotation, you get a larger rotational inertia.

(In which configuration does this adjustable cylinder-like object
have the larger rotational inertia?)



inertia
m

translational velocity

v

translational K.E.

K =
1

2
mv 2

momentum

p = mv

rotational inertia

I =
∑

mr 2

rotational velocity

ω

rotational K.E.

K =
1

2
Iω2

angular momentum

L = Iω



We learned earlier that momentum can be transferred from one
object to another, but cannot be created or destroyed.

Consequently, a system on which no external forces are exerted (an
“isolated system”) has a constant momentum (~p = m~v):

∆~p = 0

We now also know that angular momentum can be transferred
from one object to another, but cannot be created or destroyed.

So a system on which no external torques are exerted has a
constant angular momentum (L = Iω):

∆~L = 0

If I spin around while sitting on a turntable (so that I am
rotationally “isolated”) and suddenly decrease my own rotational
inertia, what happens to my rotational velocity?



In which photo is this character spinning faster (larger ω)?



position

~r = (x , y)

velocity

~v = (vx , vy ) =
d~r

dt

acceleration

~a = (ax , ay ) =
d~v

dt

if ax is constant then:

vx ,f = vx ,i + ax t

xf = xi + vx ,i t +
1

2
ax t2

v 2
x ,f = v 2

x ,i + 2ax∆x

rotational coordinate

ϑ = s/r

rotational velocity

ω =
dϑ

dt

rotational acceleration

α =
dω

dt

if α is constant then:

ωf = ωi + αt

ϑf = ϑi + ωi t +
1

2
αt2

ω2
f = ω2

i + 2α∆ϑ



(Let’s not spend time solving this today. But think about which
equations from the previous slide would be useful.)
We stopped here.



Physics 8 — Monday, October 21, 2019



Let R be the radius of the
circle in this loop-the-loop
demo. I want the ball to make
it all the way around the loop
without falling off. What is the
lowest height h at which I can
start the ball (from rest)?

(A) The ball will make it all the way around if h ≥ R.

(B) The ball will make it all the way around if h ≥ 2R.

(C) If h = 2R, the ball will just make it to the top and will then
fall down (assuming, for the moment, that it slides
frictionlessly along the track). When the ball is at the top of
the circle, its velocity must still be large enough to require a
downward normal force exerted by the track on the ball. So
the minimum h is even larger than 2R. My neighbor and I are
discussing now just how much higher that should be.



The ball clearly slows down as it makes its way up from the
bottom toward the top of the circle. At the instant when the ball
is at the position shown (i.e. it is at the same level as the center of
the circle), in what direction does its velocity vector point?



The ball clearly slows down as it makes its way up from the
bottom toward the top of the circle. At the instant when the ball
is at the position shown (i.e. it is at the same level as the center of
the circle), what do we know about the vertical (y axis points up)
component, ay , of the ball’s acceleration vector?

If ay 6= 0, what vertical force(s) Fy is/are responsible?



The ball clearly slows down as it makes its way up from the
bottom toward the top of the circle. At the instant when the ball
is at the position shown (i.e. it is at the same level as the center of
the circle), what do we know about the horizontal (x axis points
right) component, ax , of the ball’s acceleration vector?

If ax 6= 0, what horizontal force(s) Fx is/are responsible?



Suppose the ball makes it all the way around the circle without
falling off. At the instant when the ball is at the position shown
(at top of circle), what do we know about the vertical component,
ay , of the ball’s acceleration vector?

If ay 6= 0, what vertical force(s) Fy is/are responsible?



Suppose the ball makes it all the way around the loop-the-loop
with much more than sufficient speed to stay on the circular track.
Let the y -axis point upward, and let vtop be the ball’s speed when
it reaches the top of the loop. What is the y component, ay , of
the ball’s acceleration when it is at the very top of the loop?

(A) ay = −g

(B) ay = +g

(C) ay = +v 2
top/R

(D) ay = −v 2
top/R

(E) ay = +g + v 2
top/R

(F) ay = −g − v 2
top/R

(G) ay = +g + vtop/R2

(H) ay = −g − vtop/R2



The track can push on the ball, but it can’t pull on the ball! How
do I express the fact that the track is still pushing on the ball even
at the very top of the loop?

(A) Write the equation of motion for the ball: m~a =
∑ ~Fon ball,

and require the normal force exerted by the track on the ball
to point inward, even at the very top. (At the very top,
“inward” is “downward.”) If the equation m~a =

∑ ~Fon ball

gave us an outward-pointing normal force (exerted by track on
ball), that would be inconsistent with the ball’s staying in
contact with the track.

(B) Use conservation of angular momentum.

(C) Draw a free-body diagram for the ball, and require that
gravity and the normal force point in opposite directions.

(D) Draw a free-body diagram for the ball, and require that the
magnitude of the normal force be at least as large as the force
of Earth’s gravity on the ball.



For the ball to stay in contact with the track when it is at the top
of the loop, there must still be an inward-pointing normal force
exerted by the track on the ball, even at the very top. How can I

express this fact using may =
∑

Fy ? Let vtop be the ball’s

speed at the top of the loop.

(A) +mv 2
top/R = +mg + FN

tb with FN
tb > 0

(B) +mv 2
top/R = +mg − FN

tb with FN
tb > 0

(C) +mv 2
top/R = −mg + FN

tb with FN
tb > 0

(D) +mv 2
top/R = −mg − FN

tb with FN
tb > 0

(E) −mv 2
top/R = +mg + FN

tb with FN
tb > 0

(F) −mv 2
top/R = +mg − FN

tb with FN
tb > 0

(G) −mv 2
top/R = −mg + FN

tb with FN
tb > 0

(H) −mv 2
top/R = −mg − FN

tb with FN
tb > 0



How do I decide the minimum height h from which the ball will
make it all the way around the loop without losing contact with
the track? For simplicity, assume that the track is very slippery, so
that you can neglect the ball’s rotational kinetic energy.

(A) 2mgR = 1
2 mv 2

top + mgh with vtop =
√

gR

(B) mgR = 1
2 mv 2

top + mgh with vtop =
√

gR

(C) mgh = 1
2 mv 2

top + 2mgR with vtop =
√

gR

(D) mgh = 1
2 mv 2

top + mgR with vtop =
√

gR

(By the way, how would the answer change if I said instead that
the (solid) ball rolls without slipping on the track?)



How do I decide the minimum height h from which the ball will
make it all the way around the loop without losing contact with
the track? Let’s now be realistic: the ball is a solid sphere that
rolls without slipping on the track.

(A) mgh = 1
2 mv 2

top + 2mgR

(B) mgh = 1
2 mv 2

top + 1
2 Iω2

top + 2mgR

with vtop =
√

gR and ωtop = vtop/rball

(Little “rball” is the radius of the ball. Big “R” is the radius of the
loop-the-loop.)



mgh =
1

2
mv 2

top +
1

2
Iω2

top + 2mgR

with vtop =
√

gR and ωtop = vtop/rball and I = 2
5 mr 2

ball.

mgh =
1

2
m(gR) +

2
5 mr 2

ball

2r 2
ball

(gR) + 2mgR = 2.7mgR

We stopped after this.



Physics 8 — Wednesday, October 23, 2019



How would you approach this problem? Discuss with your neighbor
while I set up a demonstration along the same lines . . .

(A) initial angular momentum of bucket equals final angular
momentum of cylinder + bucket

(B) initial G.P.E. equals final K.E. (translational for bucket +
rotational for cylinder)

(C) initial G.P.E. equals final K.E. of bucket

(D) initial G.P.E. equals final K.E. of cylinder

(E) initial K.E. of bucket equals final G.P.E.

(F) use torque = mgR to find constant angular acceleration



I What is the rotational inertia for a solid cylinder?

I How do you relate v of the bucket with ω of the cylinder?
Why is this true?

I What is the expression for the total kinetic energy?

I Why is angular momentum not the same for the initial and
final states?

I What are the two expressions for angular momentum used in
Chapter 11?

I Does anyone know (though this is in Chapter 12 and is tricky)
why using τ = mgR would not give the correct angular
acceleration? What if you used τ = TR, where T is the
tension in the rope?



Table 11.3. Also in “equation sheet”
http://positron.hep.upenn.edu/p8/files/equations.pdf

http://positron.hep.upenn.edu/p8/files/equations.pdf




How would you approach this problem? Discuss with neighbors!
Which (if any) of these statements is false ?

(A) I know the change in G.P.E from the initial to the desired final
states. So the initial K.E. (which is rotational) of the rod
needs to be at least this large.

(B) The book (or equation sheet) gives rotational inertia I for a
long, thin rod about its center. So I can use the parallel-axis
theorem to get I for the rod about one end.

(C) The angular momentum, L = Iω, is the same for the initial
and final states.

(D) Because the rod pivots about one end, the speed of the other
end is v = ω` (where ` is length of rod)

(E) None. (All of the above statements are true.)



The rotational inertia for a long, thin rod of length ` about a
perpendicular axis through its center is

I =
1

12
m`2

What is its rotational inertia about one end?

(A) 1
12 m`2

(B) 1
24 m`2

(C) 1
2 m`2

(D) 1
3 m`2

(E) 1
4 m`2

(F) 1
6 m`2

(We’ll repeat this question after some explanation.)



If an object revolves about an axis that does not pass through the
object’s center of mass (suppose axis has ⊥ distance d⊥ from
CoM), the rotational inertia is larger, because the object’s CoM
revolves around a circle of radius d⊥ and in addition the object
rotates about its own CoM.

This larger rotational inertia is given by the parallel axis theorem:

I = Icm + Md2
⊥

where Icm is the object’s rotational inertia about an axis (which
must be parallel to the new axis of rotation) that passes through
the object’s CoM.

(We’ll go over the parallel-axis theorem again next time. First I
want to make sure you know what you need for this week’s HW.)



The rotational inertia of a long, thin rod (whose thickness is
negligible compared with its length) of mass M and length L, for
rotation about its CoM, is

I =
1

12
ML2

Using the parallel axis theorem, what is the rod’s rotational inertia
for rotation about one end? (Click next page.)



The rotational inertia for a long, thin rod of length ` about a
perpendicular axis through its center is

I =
1

12
m`2

What is its rotational inertia about one end?

(A) 1
12 m`2

(B) 1
24 m`2

(C) 1
2 m`2

(D) 1
3 m`2

(E) 1
4 m`2

(F) 1
6 m`2



Table 11.3. Also in “equation sheet”
http://positron.hep.upenn.edu/p8/files/equations.pdf

http://positron.hep.upenn.edu/p8/files/equations.pdf




(In case you’re curious where that I = ML2/12 comes from.)



Let’s start by drawing an FBD (for the car) for the case where the
car’s speed is at exactly the value for which no friction at all is
needed to keep the car moving in its circular path. In that case,
what are the forces acting on the car?

Alongside the FBD, let’s draw (elevation view) the car on the
banked road. Let’s assume that the road curves to the left.



Physics 8 — Friday, October 25, 2019



A Ferris wheel rotates at constant speed. Draw an
FBD for each numbered carriage. For scale, draw m~a
on each FBD instead of the usual ~a. Then the two
force vectors must sum to m~a. For a realistic Ferris
wheel, ma would be much smaller than mg , but to
make drawings that bring out the physics, let’s make
ma be half the size of mg . In other words, for the sake
of illustration, we’ll spin the Ferris wheel fast enough
that v 2/R = g/2.

I’ll try to use these values for some ad-hoc questions:

(A) E (B) NE (C) N (D) NW (E) W (F) SW (G) S (H) SE

(A) 0.5 (B) 1.0 (C)
√

5
4 = 1.118 (D) 1.32 (E) 1.5 (F) 2.0



I Since the string’s length L stays constant, what
shape does the ball’s path trace out as it moves?

I Does the ball’s acceleration have a component
that points along the axis of the string? If so,
does its magnitude depend on the ball’s speed?

I What two forces are acting on the ball?

I Assuming that no energy is dissipated, how can
we relate the ball’s speed v to its height y ?

I Can you write m~a =
∑ ~F for the component of ~a

and
∑ ~F that points along the string?

(“small” ball ⇒ neglect the ball’s rotation about its own CoM)



How do I relate angle θ to speed v? Ei = mgL → E = 1
2 mv 2 + mgy

(A) 1
2 mv 2 = mg(L− y) = mgL(1− cos θ)

(B) 1
2 mv 2 = mg(L− y) = mgL(1− sin θ)

(C) 1
2 mv 2 = mg(L− y) = mgL cos θ

(D) 1
2 mv 2 = mg(L− y) = mgL sin θ

Hint: draw on the figure a vertical line of length L− y = yi − y

Next: write “radial” component of m~a =
∑ ~F to find T





When does the block lose contact with the sphere?

A small block of mass m slides
down a sphere of radius R,
starting from rest at the top.
The sphere is immobile, and
friction between the block and
the sphere is negligible. In terms
of m, g , R, and θ, determine:
(a) the K.E. of the block;
(b) the centripetal acceleration
of the block;
(c) the normal force exerted by
the sphere on the block.
(d) At what value of θ does the
block lose contact with the
sphere?



I Are the angles of the two strings
w.r.t. horizontal equal?

I Are the tensions in the two strings
equal? How do you know?

I What three forces act on the ball?

I Is the ball accelerating vertically?
Horizontally?

I Draw a FBD for the ball, showing
both horizontal (radial) and
vertical component of each force.

Notice that the ball’s speed v increases with time, until finally one
string breaks. Which one? (Which string’s tension is larger?)



(plan view — from above)

How would you approach this problem? Discuss with neighbors!

(A) The final K.E. (rotational+translational) equals the initial
K.E. of the ball.

(B) The initial momentum m~v of the ball equals the final
momentum (m + M)~v of the door+ball.

(C) The initial angular momentum L = r⊥mv of the ball w.r.t. the
hinge axis equals the final angular momentum L = Iω of the
door+ball.



I know that the rotational inertia of a thin rod of length L about a
perpendicular axis through its center is I = 1

12 mL2. The rotational
inertia I to use for the final state here is

(A) I = ML2 + mL2

(B) I = 1
12 ML2 + M(L2 )2 + m( 2

3 L)2

(C) I = 1
12 ML2 + 2

3 mL2

(D) I = 1
12 ML2 + m( 2

3 L)2

(E) I = 1
12 ML2 + mL2

(Challenge: Also think how the answer would change if the radius
of the putty ball were non-negligible. What if the thickness of the
door were non-negligible? Does the height of the door matter?)



Physics 8 — Monday, October 28, 2019

I After spending this week’s class time on torque, we’ll spend 4
weeks applying the ideas of forces, vectors, and torque to the
analysis of architectural structures. Fun reward for your work!



Three different expressions for angular momentum:

L = Iω

L = r⊥ mv

L = r mv⊥

The second expression is telling you that momentum times lever
arm (w.r.t. the relevant pivot axis) equals angular momentum.

The second and third expressions are both simplified ways of
writing the more general (but more difficult) expression

~L = ~r × ~p





Where is the center of mass of this pinwheel-like object?



What is this object’s rotational inertia, for rotation about its center
of mass? Assume that all of the mass is concentrated in the
orange blobs, and assume that the orange blobs are “point
masses,” i.e. that their size is much smaller than R.



Suppose I have a solid disk of radius R and mass m. I rotate it
about its CoM, about an axis ⊥ to the plane of the page. What is
its rotational inertia? (If you don’t happen to remember — is it
bigger than, smaller than, or equal to mR2 ?)



Now I take the same disk, attach it to a string or a lightweight
stick of length D, and make the disk’s CoM go around in circles of
radius D. Is the mass now farther than or closer to the rotation axis
than in the original rotation (about CoM)? What happens to I ?



If an object revolves about an axis that does not pass through the
object’s center of mass (suppose axis has ⊥ distance D from
CoM), the rotational inertia is larger, because the object’s CoM
revolves around a circle of radius D and in addition the object
rotates about its own CoM.

This larger rotational inertia is given by the parallel axis theorem:

I = Icm + MD2

where Icm is the object’s rotational inertia about an axis (which
must be parallel to the new axis of rotation) that passes through
the object’s CoM.



Using the parallel axis theorem, what is the disk’s rotational inertia
about the displaced axis (the axis that is distance D away from the
CoM)?



video segment break

I begin video preceding ws15 = mz12



Torque: the rotational analogue of force

Just as an unbalanced force causes linear acceleration

~F = m~a

an unbalanced torque causes rotational acceleration

τ = Iα

Torque is (lever arm) × (force)

τ = r⊥ F

where r⊥ is the “perpendicular distance” from the rotation axis to
the line-of-action of the force.



position

~r = (x , y)

velocity

~v = (vx , vy ) =
d~r

dt

acceleration

~a = (ax , ay ) =
d~v

dt

momentum

~p = m~v

force
~F = m~a

rotational coordinate

ϑ = s/r

rotational velocity

ω = dϑ/dt

rotational acceleration

α = dω/dt

angular momentum

L = Iω

L = r⊥ mv

torque
τ = Iα

τ = r⊥ F



I wind a string around a coffee can of radius R = 0.05 m. (That’s
5 cm.) Friction prevents the string from slipping. I apply a tension
T = 20 N to the free end of the string. The free end of the string
is tangent to the coffee can, so that the radial direction is
perpendicular to the force direction. What is the magnitude of the
torque exerted by the string on the coffee can?

(A) 1 N ·m
(B) 2 N ·m
(C) 5 N ·m
(D) 10 N ·m
(E) 20 N ·m



Suppose that the angular acceleration of the can is α = 2 s−2

when the string exerts a torque of 1 N ·m on the can. What would
the angular acceleration of the can be if the string exerted a torque
of 2 N ·m instead?

(A) α = 0.5 s−2

(B) α = 1 s−2

(C) α = 2 s−2

(D) α = 4 s−2

(E) α = 5 s−2

(F) α = 10 s−2



I apply a force of 5.0 N at a perpendicular distance of 5 cm
(r⊥ = 0.05 m) from this rotating wheel, and I observe some
angular acceleration α. What force would I need to apply to this
same wheel at r⊥ = 0.10 m (that’s 10 cm) to get the same angular
acceleration α?

(A) F = 1.0 N

(B) F = 2.5 N

(C) F = 5.0 N

(D) F = 10 N

(E) F = 20 N



Suppose that I use the tension T in the string to apply a given
torque τ = r⊥T to this wheel, and it experiences a given angular
acceleration α. Now I increase the rotational inertia I of the wheel
and then apply the same torque. The new angular acceleration
αnew will be

(A) larger: αnew > α

(B) the same: αnew = α

(C) smaller: αnew < α



I want to tighten a bolt to a torque of 1.0 newton-meter, but I
don’t have a torque wrench. I do have an ordinary wrench, a ruler,
and a 1.0 kg mass tied to a string. How can I apply the correct
torque to the bolt?

(A) Orient the wrench horizontally and hang the mass at a
distance 0.1 m from the axis of the bolt

(B) Orient the wrench horizontally and hang the mass at a
distance 1.0 m from the axis of the bolt



If the wrench is at 45◦ w.r.t. horizontal, will the 1.0 kg mass
suspended at a distance 0.1 m along the wrench still exert a torque
of 1.0 newton-meter on the bolt?

(A) Yes. The force of gravity has not changed, and the distance
has not changed.

(B) No. The torque is now smaller — about 0.71 newton-meter
— because the “perpendicular distance” is now smaller by a
factor of 1/

√
2.

(C) No. The torque is now larger — about 1.4 newton-meter.



τ = r⊥F = rF⊥ = rF sin θrF = |~r × ~F |

Four ways to get the magnitude of the torque

I (perpendicular component of distance) × (force)

I (distance) × (perpendicular component of force)

I (distance) (force) (sin θ between ~r and ~F )

I use magnitude of “vector product” ~r × ~F (a.k.a.
“cross product”)



To tighten a bolt, I apply a force of the same magnitude F at
different positions and angles. Which torque is largest?



To tighten a bolt, I apply a force of magnitude F at different
positions and angles. Which torque is smallest?



I want to apply to this meter stick two torques of the same
magnitude and opposite sense, so that the stick has zero rotational
acceleration. I apply one force of 5 N at a lever arm of 0.5 m. I
want to apply an opposing force at a lever arm of 0.2 m, so that
the second torque balances the first torque. How large must this
second force be?

(A) 1.0 N

(B) 2.0 N

(C) 12.5 N

(D) 25 N

we stopped here



Physics 8 — Wednesday, October 30, 2019

I This week, you’re reading Ch2 (statics) and Ch3 (determinate
systems: equilibrium, trusses, arches) of Onouye/Kane. Feel
free to buy one of my $10 used copies if you wish. At the end
of the term, you can keep it, or sell it back to me for $10.

I HW8 due this Friday. HW help: Wed 4–6 (4–7?) [Bill] 3C4,
Thu 6–8pm [Grace] 2C4.

I want to apply to a meter stick two torques of the same
magnitude and opposite sense, so that the stick has zero rotational
acceleration. I apply one force of 5 N at a lever arm of 0.5 m. I
want to apply an opposing force at a lever arm of 0.2 m, so that
the second torque balances the first torque. How large must this
second force be? (Both forces’ lines of action are perpendicular to
the axis of the meter stick.)

(A) 1.0 N (B) 2.0 N (C) 12.5 N (D) 25 N



I want to apply to this meter stick two torques of the same
magnitude and opposite sense, so that the stick has zero rotational
acceleration. I apply one force of 10 N at a lever arm of 0.5 m. I
tie a second string on the opposite end, 0.5 m from the pivot
point. The second force is applied at a 45◦ angle w.r.t. the
vertical. How large must this second force be?

(A) 5 N

(B) 7 N

(C) 10 N

(D) 14 N

(E) 20 N



If the rod doesn’t accelerate (rotationally, about the pivot), what
force does the scale read?

(A) 1.0 N

(B) 5.0 N

(C) 7.1 N

(D) 10 N

(E) 14 N

(F) 20 N



If the rod doesn’t accelerate, what force does the scale read?

(A) 1.0 N

(B) 5.0 N

(C) 7.1 N

(D) 10 N

(E) 14 N

(F) 20 N



If the rod doesn’t accelerate, what force does the scale read?

(A) 1.0 N

(B) 5.0 N

(C) 7.1 N

(D) 10 N

(E) 14 N

(F) 20 N



If the rod doesn’t accelerate, what force does the scale read?

(A) 1.0 N

(B) 5.0 N

(C) 7.1 N

(D) 10 N

(E) 14 N

(F) 20 N



If the rod doesn’t accelerate, what force does the scale read?

(A) 1.0 N

(B) 5.0 N

(C) 7.1 N

(D) 10 N

(E) 14 N

(F) 20 N



τ = r⊥F = rF⊥ = rF sin θrF = |~r × ~F |

Four ways to get the magnitude of the torque due
to a force:

I (perpendicular component of distance) × (force)

I (distance) × (perpendicular component of force)

I (distance) (force) (sin θ between ~r and ~F )

I use magnitude of “vector product” ~r × ~F (a.k.a.
“cross product”)

To get the “direction” of a torque, use the
right-hand rule.



Note right-hand rule for vector product ~τ = ~r × ~F .

Note that most screws have “right-handed” threads.

Turn “right” (clockwise) to tighten, turn “left”
(counterclockwise) to loosen.



If you look at the face of a clock, whose hands are moving
clockwise, do the rotational velocity vectors of the clock’s hands
point toward you or toward the clock?

(A) Toward me

(B) Toward the clock

(C) Neither — when I curl the fingers of my right hand toward the
clock, my thumb points to the left, in the 9 o’clock direction



Let’s use forces and torques to
analyze the big red wheel that we
first saw on Monday. The wheel
has rotational inertia I .

The string is wrapped at radius
R, with an object of mass m
dangling on the string.

For the dangling object, write

may =
∑

Fy

For the cylinder, write

Iα =
∑

τ



(Let’s postpone this math until Friday.)

After some math, I get

α =
mgR

Iwheel + mR2
≈ mgR

Iwheel

(The approximation is for the limit where the object falls at a� g ,
so the string tension is T = (mg −ma) ≈ mg .)



Why did increasing the dangling
mass m increase the wheel’s
rotational acceleration α ?

Why did increasing the radius R
from which the dangling mass
was suspended increase the
wheel’s rotational acceleration?

Why did sliding the big rotating
masses farther out on the
extended “arms” decrease the
wheel’s rotational acceleration?



Let’s go back and use torque to analyze another problem that last
week we were only able to analyze using energy conservation:
a cylinder rolling (without slipping) down an inclined plane.

What 3 forces act on the cylinder? What is the rotation axis?
Draw FBD and extended FBD. What are the torque(s) about this
axis? How are α and a related? Write ~F = m~a and τ = Iα.

(Let’s also postpone the math for this until Friday.)



Iα =
∑

τ

I
(ax

R

)
= RF s

F s =

(
I

R2

)
ax

max = mg sin θ − F s

max = mg sin θ −
(

I

R2

)
ax(

m +
I

R2

)
ax = mg sin θ

ax =
mg sin θ

m + I
R2

=
g sin θ

1 +
(

I
mR2

)
Remember that the object with the larger “shape factor”
I/(mR2) rolls downhill more slowly.



Torques are important in architecture because they
allow us to determine the conditions for a structure
to stay put.

For an object (such as a structure or a part of a
structure) to stay put, it must have zero
acceleration, and it must have zero rotational
acceleration.

So the vector sum of all forces must add to zero,
and the sum of all torques (about any axis) must
also be zero (to keep ~a = 0 and α = 0).

If these conditions are met, the object is in
equilibrium: no unbalanced forces or torques.



Which column supports more of the beam’s weight?

(A) Left column supports more than half of the beam’s weight.

(B) Right column supports more than half of the beam’s weight.

(C) Same. Each column supports half of the beam’s weight.



Let’s analyze this configuration, then demonstrate using two scales.

I How do I write
∑

Fy = 0 ?

I What is a good choice of “rotation” axis here?

I How do I write
∑
τ = 0 ?

I What if I picked a different axis?



While we here, let’s revisit the “center-of-mass chalkline”
demonstration from a few weeks ago.

Now that we know about torque, we can see why the CoM always
winds up directly beneath the pivot, once we understand that the
line-of-action for gravity passes through the CoM.

(Depending on the time, we may do this Friday instead.)



A beam of mass M = 20 kg and length L = 2 m is attached to a
wall by a hinge. A sign of mass m = 10 kg hangs from the end of
the beam. The end of the beam is supported by a cable (at
θ = 30◦ angle w.r.t. horizontal beam), which is anchored to the
wall above the hinge.

What forces act on the
beam? (Draw EFBD.)

Find the cable tension T .

Find the “reaction” forces
Fx and Fy exerted by the
hinge on the beam.

What 3 equations can we
write for the beam? (Next
few slides.)

(Redraw this on the board.)



Beam mass M, length L. Sign mass m. Cable angle θ from
horizontal. Hinge exerts forces Fx , Fy on beam.

How do we write “sum of horizontal forces (on beam) = 0” ?

(A) Fx + T cos θ = 0

(B) Fx + T sin θ = 0

(C) Fx − T cos θ = 0

(D) Fx − T sin θ = 0



Beam mass M, length L. Sign mass m. Cable angle θ from
horizontal. Hinge exerts forces Fx , Fy on beam.

How do we write “sum of vertical forces (on beam) = 0” ?

(A) Fy + T cos θ + (M + m)g = 0

(B) Fy + T cos θ − (M + m)g = 0

(C) Fy + T cos θ − (M + m)g = 0

(D) Fy + T sin θ + (M + m)g = 0

(E) Fy + T cos θ − (M + m)g = 0

(F) Fy + T sin θ − (M + m)g = 0

(G) Fy − T cos θ − (M + m)g = 0

(H) Fy − T sin θ − (M + m)g = 0



Beam mass M, length L. Sign mass m. Cable angle θ from
horizontal. Hinge exerts forces Fx , Fy on beam.

How do we write “sum of torques (about hinge) = 0” ?

(A) +L
2 Mg + Lmg + LT cos θ = 0

(B) +L
2 Mg + Lmg + LT sin θ = 0

(C) −L
2 Mg + Lmg + LT cos θ = 0

(D) −L
2 Mg + Lmg + LT sin θ = 0

(E) −L
2 Mg − Lmg + LT cos θ = 0

(F) −L
2 Mg − Lmg + LT sin θ = 0



The 3 equations for static equilibrium in the xy plane

sum of horizontal forces = 0:

Fx − T cos θ = 0

sum of vertical forces = 0:

Fy + T sin θ − (M + m)g = 0

sum of torques (a.k.a. moments) about hinge = 0:

−L

2
Mg − Lmg + LT sin θ = 0



Here’s my solution: let’s compare with the demonstration



Let’s build & measure a simplified arch

Often the essence of physics is to reduce a complicated problem to
a similar problem that is easier to analyze.

(Does this make the function of a “roller support” more obvious?!)



(We’ll emphasize function over form here . . .)

Often the essence of physics is to reduce a complicated problem to
a similar problem that is easier to analyze. Use a cable to hold
bottom together so that we can use scale to measure tension.

Weight (mg) of each side is 20 N.

We’ll exploit mirror symmetry and
analyze just one side of arch.

What forces act (and where) on the
r.h.s. of the arch? (Draw EFBD for
the right-hand board.)



Use a cable to hold bottom of “arch” together so that we can use
scale to measure tension. Weight (mg) of each side is 20 N. We’ll
exploit mirror symmetry and analyze just one side of arch.

Right side shows EFBD for right-hand board.



How many unknown variables is it possible to determine using the
equations for static equilibrium in a plane?

(A) one

(B) two

(C) three

(D) four

(E) five



Static equilibrium lets us write down three equations for a given
object:

∑
Fx = 0,

∑
Fy = 0,

∑
Mz = 0. Let’s first sum up the

“moments” (a.k.a. torques) about the top hinge.

Which statement correctly expresses
∑

Mz = 0 (a.k.a.
∑
τ = 0)?

(Let the mass and length of each wooden board be L and m.)

(A) −mg
(
L
2

)
cos θ + FNL cos θ − TL sin θ = 0

(B) −mg
(
L
2

)
cos θ + FNL cos θ + TL sin θ = 0

(C) −mg
(
L
2

)
sin θ + FNL sin θ − TL cos θ = 0

(D) −mg
(
L
2

)
sin θ + FNL sin θ + TL cos θ = 0

(E) +mg
(
L
2

)
cos θ + FNL cos θ − TL sin θ = 0

(F) +mg
(
L
2

)
cos θ + FNL cos θ + TL sin θ = 0

(G) +mg
(
L
2

)
sin θ + FNL sin θ − TL cos θ = 0

(H) +mg
(
L
2

)
sin θ + FNL sin θ + TL cos θ = 0



Let’s start with torque (about top hinge) due to tension T .

I Usual convention: clockwise = negative, ccw = positive.

I Draw vector ~r from pivot to point where force is applied.

I Draw force vector ~F , with its line-of-action passing through
the point where the force is applied.

I Decompose ~r to find component r⊥ that is perpendicular to
~F . The component r⊥ is called the “lever arm.”

I Magnitude of torque is |τ | = (r⊥)(F ).



Alternative method: use (r)(F⊥) instead of (r⊥)(F ).

I Draw vector ~r from pivot to point where force is applied.

I Draw force vector ~F , with its line-of-action passing through
the point where the force is applied.

I Decompose ~F to find component F⊥ perpendicular to ~r .

I Magnitude of torque is |τ | = (r)(F⊥).



Now you try it for the normal force ~FN .

I Draw vector ~r from pivot to point where force is applied.

I Draw force vector ~F , with its line-of-action passing through
the point where the force is applied.

I Decompose ~r to find component r⊥ that is perpendicular to
~F . The component r⊥ is called the “lever arm.”

I Magnitude of torque is |τ | = r⊥F .

Which component of ~r is
perpendicular to the normal
force ~FN ?

(A) horizontal component

(B) vertical component



Now you try it for the normal force ~FN .

I Draw vector ~r from pivot to point where force is applied.

I Draw force vector ~F , with its line-of-action passing through
the point where the force is applied.

I Decompose ~r to find component r⊥ that is perpendicular to
~F . The component r⊥ is called the “lever arm.”

I Magnitude of torque is |τ | = r⊥F .

How long is the horizontal
component of ~r (i.e. the ~r
component which is
perpendicular to ~F ) ?

(A) L cos θ

(B) L sin θ

(C) L tan θ



OK, now back to the original question: Let’s sum up the
“moments” (a.k.a. torques) about the top hinge.

Which statement correctly expresses
∑

Mz = 0 (a.k.a.
∑
τ = 0)?

(Let the mass and length of each wooden board be L and m.)

(A) −mg
(
L
2

)
cos θ + FNL cos θ − TL sin θ = 0

(B) −mg
(
L
2

)
cos θ + FNL cos θ + TL sin θ = 0

(C) −mg
(
L
2

)
sin θ + FNL sin θ − TL cos θ = 0

(D) −mg
(
L
2

)
sin θ + FNL sin θ + TL cos θ = 0

(E) +mg
(
L
2

)
cos θ + FNL cos θ − TL sin θ = 0

(F) +mg
(
L
2

)
cos θ + FNL cos θ + TL sin θ = 0

(G) +mg
(
L
2

)
sin θ + FNL sin θ − TL cos θ = 0

(H) +mg
(
L
2

)
sin θ + FNL sin θ + TL cos θ = 0

Next: what about
∑

Fx = 0 and
∑

Fy = 0 ?



Next: what about
∑

Fx = 0 and
∑

Fy = 0 ?



We said mg = 20 N, so we expect the string tension to be

T =
10 N

tan θ

How would this change if we suspended a weight Mg from the
hinge? (By symmetry, each side of arch carries half of this Mg .)



Another equilibrium problem!

The top end of a ladder of inertia m rests against a smooth (i.e.
slippery) wall, and the bottom end rests on the ground. The
coefficient of static friction between the ground and the ladder is
µs . What is the minimum angle between the ground and the
ladder such that the ladder does not slip?

Let’s start by drawing an EFBD for the ladder.



Why must we say the
wall is slippery?

Is the slippery wall
more like a pin or a
roller support?

What plays the role
here that string tension
played in the previous
problem?

Does the combination
of two forces at the
bottom act more like a
pin or a roller support?

Which forces would an
engineer call “reaction”
forces?



Which choice of pivot axis will give us the simplest
equation for

∑
Mz = 0 ? (We’ll get an equation

involving only two forces if we choose this axis.)

(A) Use bottom of ladder as pivot axis.

(B) Use center of ladder as pivot axis.

(C) Use top of ladder as pivot axis.



How would I write
∑

Mz = 0 about the bottom
end of the ladder? (Take length of ladder to be L.)

(A) FW L cos θ + mgL sin θ = 0

(B) FW L cos θ + mg L
2 sin θ = 0

(C) FW L cos θ −mgL sin θ = 0

(D) FW L cos θ −mg L
2 sin θ = 0

(E) FW L sin θ + mgL cos θ = 0

(F) FW L sin θ + mg L
2 cos θ = 0

(G) FW L sin θ −mgL cos θ = 0

(H) FW L sin θ −mg L
2 cos θ = 0

What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?



What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?

Let’s answer the original question:

What is the minimum angle between the ground and the ladder
such that the ladder does not slip?



Suppose we add to this picture a woman of mass M
who has climbed up a distance d along the length
of the ladder. Now how do we write the moment
equation

∑
Mz = 0 ?

(A) FW L sin θ −mg L
2 cos θ + Mg d

2 cos θ = 0

(B) FW L sin θ −mg L
2 cos θ + Mg d

2 sin θ = 0

(C) FW L sin θ −mg L
2 cos θ + Mgd cos θ = 0

(D) FW L sin θ −mg L
2 cos θ + Mgd sin θ = 0

(E) FW L sin θ −mg L
2 cos θ −Mg d

2 cos θ = 0

(F) FW L sin θ −mg L
2 cos θ −Mg d

2 sin θ = 0

(G) FW L sin θ −mg L
2 cos θ −Mgd cos θ = 0

(H) FW L sin θ −mg L
2 cos θ −Mgd sin θ = 0

What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?



What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?

For a given θ, how far up can she climb before the ladder slips?



Here’s a trickier equilibrium problem:

What forces act on the beam?

What 3 equations can we write for the beam?



A tightly stretched “high wire” has length L = 50 m. It sags by
d = 1.0 m when a tightrope walker of mass M = 51 kg stands at
the center of the wire.

What is the tension in the wire?

Is it possible to increase the tension in the wire so that there is no
sag at all (i.e. so that d = 0)?

What happens to the tension as we make the sag smaller and
smaller?



Now suppose a 51 kg sign is suspended from a cable (but not at
the center), as shown below.

How would you find the tensions T1 and T2?

Once you know T1 and T2, what are the horizontal and vertical
forces exerted by the two supports on the cable?



How many equations does the “method of joints” allow us to write
down for this truss? (Consider how many joints the truss has.)

(A) 4 (B) 8 (C) 12 (D) 15



Physics 8 — Wednesday, October 30, 2019

I This week, you’re reading Ch2 (statics) and Ch3 (determinate
systems: equilibrium, trusses, arches) of Onouye/Kane. Feel
free to buy one of my $10 used copies if you wish. At the end
of the term, you can keep it, or sell it back to me for $10.

I HW8 due this Friday. HW help: Wed 4–6 (4–7?) [Bill] 3C4,
Thu 6–8pm [Grace] 2C4.





Physics 8 — Friday, November 1, 2019
I Turn in HW8. Pick up HW9 handout in back corner of room.

I This week, you read Ch2 (statics) and Ch3 (determinate
systems: equilibrium, trusses, arches) of Onouye/Kane. Next
week, you’ll skim Ch4 (load tracing) and read Ch5 (strength
of materials). Feel free to buy one of my $10 used copies if
you wish. At the end of the term, you can keep it, or sell it
back to me for $10.

A beam of mass M = 20 kg and length
L = 2 m is attached to a wall by a hinge.
A sign of mass m = 10 kg hangs from the
end of the beam. The end of the beam is
supported by a cable (at θ = 30◦ angle
w.r.t. horizontal beam), which is anchored
to the wall above the hinge.

Let’s start by drawing an EFBD for the
beam, showing each force acting on the
beam and its line of action.



A beam of mass M = 20 kg and length L = 2 m is attached to a
wall by a hinge. A sign of mass m = 10 kg hangs from the end of
the beam. The end of the beam is supported by a cable (at
θ = 30◦ angle w.r.t. horizontal beam), which is anchored to the
wall above the hinge.

What forces act on the
beam? (Draw EFBD.)

Find the cable tension T .

Find the “reaction” forces
Fx and Fy exerted by the
hinge on the beam.

What 3 equations can we
write for the beam? (Next
few slides.)

(Redraw this on the board.)



Beam mass M, length L. Sign mass m. Cable angle θ from
horizontal. Hinge exerts forces Fx , Fy on beam.

How do we write “sum of horizontal forces (on beam) = 0” ?

(A) Fx + T cos θ = 0

(B) Fx + T sin θ = 0

(C) Fx − T cos θ = 0

(D) Fx − T sin θ = 0



Beam mass M, length L. Sign mass m. Cable angle θ from
horizontal. Hinge exerts forces Fx , Fy on beam.

How do we write “sum of vertical forces (on beam) = 0” ?

(A) Fy + T cos θ + (M + m)g = 0

(B) Fy + T cos θ − (M + m)g = 0

(C) Fy + T cos θ − (M + m)g = 0

(D) Fy + T sin θ + (M + m)g = 0

(E) Fy + T cos θ − (M + m)g = 0

(F) Fy + T sin θ − (M + m)g = 0

(G) Fy − T cos θ − (M + m)g = 0

(H) Fy − T sin θ − (M + m)g = 0



Beam mass M, length L. Sign mass m. Cable angle θ from
horizontal. Hinge exerts forces Fx , Fy on beam.

How do we write “sum of torques (about hinge) = 0” ?

(A) +L
2 Mg + Lmg + LT cos θ = 0

(B) +L
2 Mg + Lmg + LT sin θ = 0

(C) −L
2 Mg + Lmg + LT cos θ = 0

(D) −L
2 Mg + Lmg + LT sin θ = 0

(E) −L
2 Mg − Lmg + LT cos θ = 0

(F) −L
2 Mg − Lmg + LT sin θ = 0



The 3 equations for static equilibrium in the xy plane

sum of horizontal forces = 0:

Fx − T cos θ = 0

sum of vertical forces = 0:

Fy + T sin θ − (M + m)g = 0

sum of torques (a.k.a. moments) about hinge = 0:

−L

2
Mg − Lmg + LT sin θ = 0



Here’s my solution



Let’s build & measure a simplified arch

Often the essence of physics is to reduce a complicated problem to
a similar problem that is easier to analyze.

(Does this make the function of a “roller support” more obvious?!)



(We’ll emphasize function over form here . . .)

Often the essence of physics is to reduce a complicated problem to
a similar problem that is easier to analyze. Use a cable to hold
bottom together so that we can use scale to measure tension.

Weight (mg) of each side is 20 N.

We’ll exploit mirror symmetry and
analyze just one side of arch.

What forces act (and where) on the
r.h.s. of the arch? (Draw EFBD for
the right-hand board.)



Use a cable to hold bottom of “arch” together so that we can use
scale to measure tension. Weight (mg) of each side is 20 N. We’ll
exploit mirror symmetry and analyze just one side of arch.

Right side shows EFBD for right-hand board.



How many unknown variables is it possible to determine using the
equations for static equilibrium in a plane?

(A) one

(B) two

(C) three

(D) four

(E) five



Static equilibrium lets us write down three equations for a given
object:

∑
Fx = 0,

∑
Fy = 0,

∑
Mz = 0. Let’s first sum up the

“moments” (a.k.a. torques) about the top hinge.

Which statement correctly expresses
∑

Mz = 0 (a.k.a.
∑
τ = 0)?

(Let the mass and length of each wooden board be L and m.)

(A) −mg
(
L
2

)
cos θ + FNL cos θ − TL sin θ = 0

(B) −mg
(
L
2

)
cos θ + FNL cos θ + TL sin θ = 0

(C) −mg
(
L
2

)
sin θ + FNL sin θ − TL cos θ = 0

(D) −mg
(
L
2

)
sin θ + FNL sin θ + TL cos θ = 0

(E) +mg
(
L
2

)
cos θ + FNL cos θ − TL sin θ = 0

(F) +mg
(
L
2

)
cos θ + FNL cos θ + TL sin θ = 0

(G) +mg
(
L
2

)
sin θ + FNL sin θ − TL cos θ = 0

(H) +mg
(
L
2

)
sin θ + FNL sin θ + TL cos θ = 0



Let’s start with torque (about top hinge) due to tension T .

I Usual convention: clockwise = negative, ccw = positive.

I Draw vector ~r from pivot to point where force is applied.

I Draw force vector ~F , with its line-of-action passing through
the point where the force is applied.

I Decompose ~r to find component r⊥ that is perpendicular to
~F . The component r⊥ is called the “lever arm.”

I Magnitude of torque is |τ | = (r⊥)(F ).



Alternative method: use (r)(F⊥) instead of (r⊥)(F ).

I Draw vector ~r from pivot to point where force is applied.

I Draw force vector ~F , with its line-of-action passing through
the point where the force is applied.

I Decompose ~F to find component F⊥ perpendicular to ~r .

I Magnitude of torque is |τ | = (r)(F⊥).



Now you try it for the normal force ~FN .

I Draw vector ~r from pivot to point where force is applied.

I Draw force vector ~F , with its line-of-action passing through
the point where the force is applied.

I Decompose ~r to find component r⊥ that is perpendicular to
~F . The component r⊥ is called the “lever arm.”

I Magnitude of torque is |τ | = r⊥F .

Which component of ~r is
perpendicular to the normal
force ~FN ?

(A) horizontal component

(B) vertical component



Now you try it for the normal force ~FN .

I Draw vector ~r from pivot to point where force is applied.

I Draw force vector ~F , with its line-of-action passing through
the point where the force is applied.

I Decompose ~r to find component r⊥ that is perpendicular to
~F . The component r⊥ is called the “lever arm.”

I Magnitude of torque is |τ | = r⊥F .

How long is the horizontal
component of ~r (i.e. the ~r
component which is
perpendicular to ~F ) ?

(A) L cos θ

(B) L sin θ

(C) L tan θ



OK, now back to the original question: Let’s sum up the
“moments” (a.k.a. torques) about the top hinge.

Which statement correctly expresses
∑

Mz = 0 (a.k.a.
∑
τ = 0)?

(Let the mass and length of each wooden board be L and m.)

(A) −mg
(
L
2

)
cos θ + FNL cos θ − TL sin θ = 0

(B) −mg
(
L
2

)
cos θ + FNL cos θ + TL sin θ = 0

(C) −mg
(
L
2

)
sin θ + FNL sin θ − TL cos θ = 0

(D) −mg
(
L
2

)
sin θ + FNL sin θ + TL cos θ = 0

(E) +mg
(
L
2

)
cos θ + FNL cos θ − TL sin θ = 0

(F) +mg
(
L
2

)
cos θ + FNL cos θ + TL sin θ = 0

(G) +mg
(
L
2

)
sin θ + FNL sin θ − TL cos θ = 0

(H) +mg
(
L
2

)
sin θ + FNL sin θ + TL cos θ = 0

Next: what about
∑

Fx = 0 and
∑

Fy = 0 ?



Next: what about
∑

Fx = 0 and
∑

Fy = 0 ?



We said mg = 20 N, so we expect the string tension to be

T =
10 N

tan θ

How would this change if we suspended a weight Mg from the
hinge? (By symmetry, each side of arch carries half of this Mg .)



Let’s use forces and torques to
analyze the big red wheel that we
first saw on Monday. The wheel
has rotational inertia I .

The string is wrapped at radius
R, with an object of mass m
dangling on the string.

For the dangling object, write

may =
∑

Fy

For the cylinder, write

Iα =
∑

τ



After some math, I get

α =
mgR

Iwheel + mR2
≈ mgR

Iwheel

(The approximation is for the limit where the object falls at a� g ,
so the string tension is T = (mg −ma) ≈ mg .)



Why did increasing the dangling
mass m increase the wheel’s
rotational acceleration α ?

Why did increasing the radius R
from which the dangling mass
was suspended increase the
wheel’s rotational acceleration?

Why did sliding the big rotating
masses farther out on the
extended “arms” decrease the
wheel’s rotational acceleration?



Let’s go back and use torque to analyze another problem that last
week we were only able to analyze using energy conservation:
a cylinder rolling (without slipping) down an inclined plane.

What 3 forces act on the cylinder? What is the rotation axis?
Draw FBD and extended FBD. What are the torque(s) about this
axis? How are α and a related? Write ~F = m~a and τ = Iα.



Iα =
∑

τ

I
(ax

R

)
= RF s

F s =

(
I

R2

)
ax

max = mg sin θ − F s

max = mg sin θ −
(

I

R2

)
ax(

m +
I

R2

)
ax = mg sin θ

ax =
mg sin θ

m + I
R2

=
g sin θ

1 +
(

I
mR2

)
Remember that the object with the larger “shape factor”
I/(mR2) rolls downhill more slowly.



While we’re here, let’s revisit the “center-of-mass chalkline”
demonstration from a few weeks ago.

Now that we know about torque, we can see why the CoM always
winds up directly beneath the pivot, once we understand that the
line-of-action for gravity passes through the CoM.



Another equilibrium problem!

The top end of a ladder of inertia m rests against a smooth (i.e.
slippery) wall, and the bottom end rests on the ground. The
coefficient of static friction between the ground and the ladder is
µs . What is the minimum angle between the ground and the
ladder such that the ladder does not slip?

Let’s start by drawing an EFBD for the ladder.



Why must we say the
wall is slippery?

Is the slippery wall
more like a pin or a
roller support?

What plays the role
here that string tension
played in the previous
problem?

Does the combination
of two forces at the
bottom act more like a
pin or a roller support?

Which forces would an
engineer call “reaction”
forces?



Which choice of pivot axis will give us the simplest
equation for

∑
Mz = 0 ? (We’ll get an equation

involving only two forces if we choose this axis.)

(A) Use bottom of ladder as pivot axis.

(B) Use center of ladder as pivot axis.

(C) Use top of ladder as pivot axis.



How would I write
∑

Mz = 0 about the bottom
end of the ladder? (Take length of ladder to be L.)

(A) FW L cos θ + mgL sin θ = 0

(B) FW L cos θ + mg L
2 sin θ = 0

(C) FW L cos θ −mgL sin θ = 0

(D) FW L cos θ −mg L
2 sin θ = 0

(E) FW L sin θ + mgL cos θ = 0

(F) FW L sin θ + mg L
2 cos θ = 0

(G) FW L sin θ −mgL cos θ = 0

(H) FW L sin θ −mg L
2 cos θ = 0

What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?



What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?

Let’s answer the original question:

What is the minimum angle between the ground and the ladder
such that the ladder does not slip?



Suppose we add to this picture a woman of mass M
who has climbed up a distance d along the length
of the ladder. Now how do we write the moment
equation

∑
Mz = 0 ?

(A) FW L sin θ −mg L
2 cos θ + Mg d

2 cos θ = 0

(B) FW L sin θ −mg L
2 cos θ + Mg d

2 sin θ = 0

(C) FW L sin θ −mg L
2 cos θ + Mgd cos θ = 0

(D) FW L sin θ −mg L
2 cos θ + Mgd sin θ = 0

(E) FW L sin θ −mg L
2 cos θ −Mg d

2 cos θ = 0

(F) FW L sin θ −mg L
2 cos θ −Mg d

2 sin θ = 0

(G) FW L sin θ −mg L
2 cos θ −Mgd cos θ = 0

(H) FW L sin θ −mg L
2 cos θ −Mgd sin θ = 0

What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?



What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?

For a given θ, how far up can she climb before the ladder slips?



Here’s a trickier equilibrium problem:

What forces act on the beam?

What 3 equations can we write for the beam?



A tightly stretched “high wire” has length L = 50 m. It sags by
d = 1.0 m when a tightrope walker of mass M = 51 kg stands at
the center of the wire.

What is the tension in the wire?

Is it possible to increase the tension in the wire so that there is no
sag at all (i.e. so that d = 0)?

What happens to the tension as we make the sag smaller and
smaller?



Now suppose a 51 kg sign is suspended from a cable (but not at
the center), as shown below.

How would you find the tensions T1 and T2?

Once you know T1 and T2, what are the horizontal and vertical
forces exerted by the two supports on the cable?



How many equations does the “method of joints” allow us to write
down for this truss? (Consider how many joints the truss has.)

(A) 4 (B) 8 (C) 12 (D) 15



Physics 8 — Friday, November 1, 2019

I Turn in HW8. Pick up HW9 handout in back corner of room.

I This week, you read Ch2 (statics) and Ch3 (determinate
systems: equilibrium, trusses, arches) of Onouye/Kane. Next
week, you’ll skim Ch4 (load tracing) and read Ch5 (strength
of materials). Feel free to buy one of my $10 used copies if
you wish. At the end of the term, you can keep it, or sell it
back to me for $10.



Physics 8 — Monday, November 4, 2019

I I finally added summaries of key results from Onouye/Kane
ch1-ch7 to the “equation sheet.” I’m working on ch8, and I
may do ch9 as well (though ch9 will be XC for you).

I This week, you’ll skim Ch4 (load tracing) and read Ch5
(strength of materials) of Onouye/Kane. Feel free to buy one
of my $10 used copies if you wish. At the end of the term,
you can keep it, or sell it back to me for $10.

Let’s use forces and torques to analyze the big red
wheel that we first saw last Monday. The wheel
has rotational inertia I . The string is wrapped at
radius R, with an object of mass m dangling on the
string. For the dangling object, write

may =
∑

Fy

For the cylinder, write

Iα =
∑

τ



Let’s use forces and torques to
analyze the big red wheel that we
first saw last Monday. The wheel
has rotational inertia I .

The string is wrapped at radius
R, with an object of mass m
dangling on the string.

For the dangling object, write

may =
∑

Fy

For the cylinder, write

Iα =
∑

τ



After some math, I get

α =
mgR

Iwheel + mR2
≈ mgR

Iwheel

(The approximation is for the limit where the object falls at a� g ,
so the string tension is T = (mg −ma) ≈ mg .)



Why did increasing the dangling
mass m increase the wheel’s
rotational acceleration α ?

Why did increasing the radius R
from which the dangling mass
was suspended increase the
wheel’s rotational acceleration?

Why did sliding the big rotating
masses farther out on the
extended “arms” decrease the
wheel’s rotational acceleration?



Let’s go back and use torque to analyze another problem that last
week we were only able to analyze using energy conservation:
a cylinder rolling (without slipping) down an inclined plane.

What 3 forces act on the cylinder? What is the rotation axis?
Draw FBD and extended FBD. What are the torque(s) about this
axis? How are α and a related? Write ~F = m~a and τ = Iα.



Iα =
∑

τ

I
(ax

R

)
= RF s

F s =

(
I

R2

)
ax

max = mg sin θ − F s

max = mg sin θ −
(

I

R2

)
ax(

m +
I

R2

)
ax = mg sin θ

ax =
mg sin θ

m + I
R2

=
g sin θ

1 +
(

I
mR2

)
Remember that the object with the larger “shape factor”
I/(mR2) rolls downhill more slowly.



While we’re here, let’s revisit the “center-of-mass chalkline”
demonstration from a few weeks ago.

Now that we know about torque, we can see why the CoM always
winds up directly beneath the pivot, once we understand that the
line-of-action for gravity passes through the CoM.

We stopped after this.



Another equilibrium problem!

The top end of a ladder of inertia m rests against a smooth (i.e.
slippery) wall, and the bottom end rests on the ground. The
coefficient of static friction between the ground and the ladder is
µs . What is the minimum angle between the ground and the
ladder such that the ladder does not slip?

Let’s start by drawing an EFBD for the ladder.



Why must we say the
wall is slippery?

Is the slippery wall
more like a pin or a
roller support?

What plays the role
here that string tension
played in the previous
problem?

Does the combination
of two forces at the
bottom act more like a
pin or a roller support?

Which forces would an
engineer call “reaction”
forces?



Which choice of pivot axis will give us the simplest
equation for

∑
Mz = 0 ? (We’ll get an equation

involving only two forces if we choose this axis.)

(A) Use bottom of ladder as pivot axis.

(B) Use center of ladder as pivot axis.

(C) Use top of ladder as pivot axis.



How would I write
∑

Mz = 0 about the bottom
end of the ladder? (Take length of ladder to be L.)

(A) FW L cos θ + mgL sin θ = 0

(B) FW L cos θ + mg L
2 sin θ = 0

(C) FW L cos θ −mgL sin θ = 0

(D) FW L cos θ −mg L
2 sin θ = 0

(E) FW L sin θ + mgL cos θ = 0

(F) FW L sin θ + mg L
2 cos θ = 0

(G) FW L sin θ −mgL cos θ = 0

(H) FW L sin θ −mg L
2 cos θ = 0

What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?



What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?

Let’s answer the original question:

What is the minimum angle between the ground and the ladder
such that the ladder does not slip?



Suppose we add to this picture a woman of mass M
who has climbed up a distance d along the length
of the ladder. Now how do we write the moment
equation

∑
Mz = 0 ?

(A) FW L sin θ −mg L
2 cos θ + Mg d

2 cos θ = 0

(B) FW L sin θ −mg L
2 cos θ + Mg d

2 sin θ = 0

(C) FW L sin θ −mg L
2 cos θ + Mgd cos θ = 0

(D) FW L sin θ −mg L
2 cos θ + Mgd sin θ = 0

(E) FW L sin θ −mg L
2 cos θ −Mg d

2 cos θ = 0

(F) FW L sin θ −mg L
2 cos θ −Mg d

2 sin θ = 0

(G) FW L sin θ −mg L
2 cos θ −Mgd cos θ = 0

(H) FW L sin θ −mg L
2 cos θ −Mgd sin θ = 0

What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?



What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?

For a given θ, how far up can she climb before the ladder slips?



Here’s a trickier equilibrium problem:

What forces act on the beam?

What 3 equations can we write for the beam?



A tightly stretched “high wire” has length L = 50 m. It sags by
d = 1.0 m when a tightrope walker of mass M = 51 kg stands at
the center of the wire.

What is the tension in the wire?

Is it possible to increase the tension in the wire so that there is no
sag at all (i.e. so that d = 0)?

What happens to the tension as we make the sag smaller and
smaller?



Now suppose a 51 kg sign is suspended from a cable (but not at
the center), as shown below.

How would you find the tensions T1 and T2?

Once you know T1 and T2, what are the horizontal and vertical
forces exerted by the two supports on the cable?



How many equations does the “method of joints” allow us to write
down for this truss? (Consider how many joints the truss has.)

(A) 4 (B) 8 (C) 12 (D) 15



How many unknown internal forces (tensions or compressions) do
we need to determine when we “solve” this truss?

(A) 4 (B) 5 (C) 6 (D) 7



This is a “simply supported” truss. How many independent
“reaction forces” do the two supports exert on the truss? (If there
are independent horizontal and vertical components, count them as
separate forces.)

(A) 2 (B) 3 (C) 4 (D) 6



Notice that 8 = 5 + 3.

For a planar truss that is stable and that you can solve using the
equations of static equilibrium,

2Njoints = Nbars + 3

You get two force equations per joint. You need to solve for one
unknown tension/compression per bar plus three support
“reaction” forces.



What do we learn by writing∑
Fx = 0,

∑
Fy = 0,∑

Mz = 0 for the truss as a
whole? (Use joint A as pivot.)

(I write RAx , RAy , RCy for the
3 “reaction forces” exerted by
the supports on the truss.)

(A) RAy − 2 kN + RCy = 0,
RAx + 1 kN = 0,
−(2 kN)(2 m)− (1 kN)(2 m) + (RCy )(2 m) = 0

(B) RAy − 2 kN + RCy = 0,
RAx + 1 kN = 0,
−(2 kN)(2 m)− (1 kN)(1 m) + (RCy )(4 m) = 0

(C) RAy − 2 kN + RCy = 0,
RAx + 1 kN = 0,
−(2 kN)(2 m)− (1 kN)(2 m) + (RCy )(4 m) = 0



What two equations does the
“method of joints” let us write
for joint C ?

(Let the tension in member
i ↔ j be Tij . For compression
members, we will find Tij < 0.)

(A) TCD − TBC cos θ = 0
RCy − TBC sin θ = 0

(B) TCD − TBC sin θ = 0
RCy − TBC cos θ = 0

(C) TCD + TBC cos θ = 0
RCy + TBC sin θ = 0

(D) TCD + TBC sin θ = 0
RCy + TBC cos θ = 0



What two equations does the
“method of joints” let us write
for joint A ?

(Let the tension in member
i ↔ j be Tij . For compression
members, we will find Tij < 0.)

(A) RAx − TAD − TAB cos θ = 0
RAy − TAB sin θ = 0

(B) RAx − TAD − TAB sin θ = 0
RAy − TAB cos θ = 0

(C) RAx + TAD + TAB cos θ = 0
RAy + TAB sin θ = 0

(D) RAx + TAD + TAB sin θ = 0
RAy + TAB cos θ = 0



What two equations does the
“method of joints” let us write
for joint D ?

(Let the tension in member
i ↔ j be Tij . For compression
members, we will find Tij < 0.)

(A) −2 kN + TBD = 0 and −TAD + TCD = 0

(B) −2 kN + TBD = 0 and −TAD − TCD = 0

(C) −2 kN− TBD = 0 and −TAD + TCD = 0

(D) −2 kN− TBD = 0 and −TAD − TCD = 0



I named each member force Tij (for “tension”) and let Tij > 0
mean tension and Tij < 0 mean compression. Once you’ve solved
the truss, it’s best to draw the arrows with the correct signs for
clarity. (Next page.)



Forces redrawn with arrows in correct directions, now that we
know the sign of each force. Members AB and BC are in
compression. All other members are in tension.



Another option is to write down all 2J equations at once and to
type them into Mathematica, Maple, Wolfram Alpha, etc.

In[92] eq := {

RAx + TAB*cos + TAD == 0,

RAy + TAB*sin == 0,

-TAB*cos+TBC*cos+1 == 0,

-TBD-TAB*sin-TBC*sin == 0,

-TAD+TCD == 0,

-2 + TBD == 0,

-TCD - TBC*cos == 0,

RCy + TBC*sin == 0,

sin==1.0/Sqrt[5.0],

cos==2.0/Sqrt[5.0]

}

In[93] Solve[eq]

Out[93] {

RAx → -1.,

RAy → 0.75,

RCy → 1.25,

TAB → -1.67705,

TAD → 2.5,

TBC → -2.79508,

TBD → 2.,

TCD → 2.5,

cos → 0.894427,

sin → 0.447214

}



Physics 8 — Monday, November 4, 2019

I I finally added summaries of key results from Onouye/Kane
ch1-ch7 to the “equation sheet.” I’m working on ch8, and I
may do ch9 as well (though ch9 will be XC for you).

I This week, you’ll skim Ch4 (load tracing) and read Ch5
(strength of materials) of Onouye/Kane. Feel free to buy one
of my $10 used copies if you wish. At the end of the term,
you can keep it, or sell it back to me for $10.



Physics 8 — Wednesday, November 6, 2019
I I finally added summaries of key results from Onouye/Kane

ch1-ch7 to the “equation sheet.” I’m working on ch8, and I
may do ch9 as well (though ch9 will be XC for you).

I This week, you skimmed Ch4 (load tracing) and read Ch5
(strength of materials) of Onouye/Kane.

I HW9 due Friday. HW help: (Bill) Wed 4-6:30pm DRL 3C4,
(Grace/Brooke) Thu 6-8pm DRL 2C4.

I I should have paused, after we worked out the hinged arch last
Friday, to talk about the torques (moments) due to the
vertical vs. horizontal forces and how they vary vs. θ.



Another equilibrium problem!

The top end of a ladder of inertia m rests against a smooth (i.e.
slippery) wall, and the bottom end rests on the ground. The
coefficient of static friction between the ground and the ladder is
µs . What is the minimum angle between the ground and the
ladder such that the ladder does not slip?

Let’s start by drawing an EFBD for the ladder.



Why must we say the
wall is slippery?

Is the slippery wall
more like a pin or a
roller support?

What plays the role
here that string tension
played in the previous
problem?

Does the combination
of two forces at the
bottom act more like a
pin or a roller support?

Which forces would an
engineer call “reaction”
forces?



Which choice of pivot axis will give us the simplest
equation for

∑
Mz = 0 ? (We’ll get an equation

involving only two forces if we choose this axis.)

(A) Use bottom of ladder as pivot axis.

(B) Use center of ladder as pivot axis.

(C) Use top of ladder as pivot axis.



How would I write
∑

Mz = 0 about the bottom
end of the ladder? (Take length of ladder to be L.)

(A) FW L cos θ + mgL sin θ = 0

(B) FW L cos θ + mg L
2 sin θ = 0

(C) FW L cos θ −mgL sin θ = 0

(D) FW L cos θ −mg L
2 sin θ = 0

(E) FW L sin θ + mgL cos θ = 0

(F) FW L sin θ + mg L
2 cos θ = 0

(G) FW L sin θ −mgL cos θ = 0

(H) FW L sin θ −mg L
2 cos θ = 0

What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?



What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?

Let’s answer the original question:

What is the minimum angle between the ground and the ladder
such that the ladder does not slip?



Suppose we add to this picture a woman of mass M
who has climbed up a distance d along the length
of the ladder. Now how do we write the moment
equation

∑
Mz = 0 ?

(A) FW L sin θ −mg L
2 cos θ + Mg d

2 cos θ = 0

(B) FW L sin θ −mg L
2 cos θ + Mg d

2 sin θ = 0

(C) FW L sin θ −mg L
2 cos θ + Mgd cos θ = 0

(D) FW L sin θ −mg L
2 cos θ + Mgd sin θ = 0

(E) FW L sin θ −mg L
2 cos θ −Mg d

2 cos θ = 0

(F) FW L sin θ −mg L
2 cos θ −Mg d

2 sin θ = 0

(G) FW L sin θ −mg L
2 cos θ −Mgd cos θ = 0

(H) FW L sin θ −mg L
2 cos θ −Mgd sin θ = 0

What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?



What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?

For a given θ, how far up can she climb before the ladder slips?



Here’s a trickier equilibrium problem:

What forces act on the beam?

What 3 equations can we write for the beam?

(We stopped after this.)



A tightly stretched “high wire” has length L = 50 m. It sags by
d = 1.0 m when a tightrope walker of mass M = 51 kg stands at
the center of the wire.

What is the tension in the wire?

Is it possible to increase the tension in the wire so that there is no
sag at all (i.e. so that d = 0)?

What happens to the tension as we make the sag smaller and
smaller?



Now suppose a 51 kg sign is suspended from a cable (but not at
the center), as shown below.

How would you find the tensions T1 and T2?

Once you know T1 and T2, what are the horizontal and vertical
forces exerted by the two supports on the cable?



How many equations does the “method of joints” allow us to write
down for this truss? (Consider how many joints the truss has.)

(A) 4 (B) 8 (C) 12 (D) 15



How many unknown internal forces (tensions or compressions) do
we need to determine when we “solve” this truss?

(A) 4 (B) 5 (C) 6 (D) 7



This is a “simply supported” truss. How many independent
“reaction forces” do the two supports exert on the truss? (If there
are independent horizontal and vertical components, count them as
separate forces.)

(A) 2 (B) 3 (C) 4 (D) 6



Notice that 8 = 5 + 3.

For a planar truss that is stable and that you can solve using the
equations of static equilibrium,

2Njoints = Nbars + 3

You get two force equations per joint. You need to solve for one
unknown tension/compression per bar plus three support
“reaction” forces.



What do we learn by writing∑
Fx = 0,

∑
Fy = 0,∑

Mz = 0 for the truss as a
whole? (Use joint A as pivot.)

(I write RAx , RAy , RCy for the
3 “reaction forces” exerted by
the supports on the truss.)

(A) RAy − 2 kN + RCy = 0,
RAx + 1 kN = 0,
−(2 kN)(2 m)− (1 kN)(2 m) + (RCy )(2 m) = 0

(B) RAy − 2 kN + RCy = 0,
RAx + 1 kN = 0,
−(2 kN)(2 m)− (1 kN)(1 m) + (RCy )(4 m) = 0

(C) RAy − 2 kN + RCy = 0,
RAx + 1 kN = 0,
−(2 kN)(2 m)− (1 kN)(2 m) + (RCy )(4 m) = 0



What two equations does the
“method of joints” let us write
for joint C ?

(Let the tension in member
i ↔ j be Tij . For compression
members, we will find Tij < 0.)

(A) TCD − TBC cos θ = 0
RCy − TBC sin θ = 0

(B) TCD − TBC sin θ = 0
RCy − TBC cos θ = 0

(C) TCD + TBC cos θ = 0
RCy + TBC sin θ = 0

(D) TCD + TBC sin θ = 0
RCy + TBC cos θ = 0



What two equations does the
“method of joints” let us write
for joint A ?

(Let the tension in member
i ↔ j be Tij . For compression
members, we will find Tij < 0.)

(A) RAx − TAD − TAB cos θ = 0
RAy − TAB sin θ = 0

(B) RAx − TAD − TAB sin θ = 0
RAy − TAB cos θ = 0

(C) RAx + TAD + TAB cos θ = 0
RAy + TAB sin θ = 0

(D) RAx + TAD + TAB sin θ = 0
RAy + TAB cos θ = 0



What two equations does the
“method of joints” let us write
for joint D ?

(Let the tension in member
i ↔ j be Tij . For compression
members, we will find Tij < 0.)

(A) −2 kN + TBD = 0 and −TAD + TCD = 0

(B) −2 kN + TBD = 0 and −TAD − TCD = 0

(C) −2 kN− TBD = 0 and −TAD + TCD = 0

(D) −2 kN− TBD = 0 and −TAD − TCD = 0



I named each member force Tij (for “tension”) and let Tij > 0
mean tension and Tij < 0 mean compression. Once you’ve solved
the truss, it’s best to draw the arrows with the correct signs for
clarity. (Next page.)



Forces redrawn with arrows in correct directions, now that we
know the sign of each force. Members AB and BC are in
compression. All other members are in tension.



Another option is to write down all 2J equations at once and to
type them into Mathematica, Maple, Wolfram Alpha, etc.

In[92] eq := {

RAx + TAB*cos + TAD == 0,

RAy + TAB*sin == 0,

-TAB*cos+TBC*cos+1 == 0,

-TBD-TAB*sin-TBC*sin == 0,

-TAD+TCD == 0,

-2 + TBD == 0,

-TCD - TBC*cos == 0,

RCy + TBC*sin == 0,

sin==1.0/Sqrt[5.0],

cos==2.0/Sqrt[5.0]

}

In[93] Solve[eq]

Out[93] {

RAx → -1.,

RAy → 0.75,

RCy → 1.25,

TAB → -1.67705,

TAD → 2.5,

TBC → -2.79508,

TBD → 2.,

TCD → 2.5,

cos → 0.894427,

sin → 0.447214

}



How many “reaction forces” are exerted by the supports (i.e.
exerted on the truss by the supports)?



How many internal forces (tensions or compressions in the
members) do we need to solve for to “solve” this truss?



Do you see any joint at which there are ≤ 2 unknown forces? If so,
we can start there. If not, we need to start with an EFBD for the
truss as a whole.



Try to guess RA,x , RA,y , and RD,y by inspection. Then let’s check
with the usual equations.



Now start from a joint having ≤ 2 unknown forces. In this case, I
just went through the joints alphabetically. You can make your life
easier by seeking out equations having just 1 unknown.



TAB = −0.577 kN, TAE = +0.289 kN, TBE = +0.577 kN,
TBC = −0.577 kN, TCE = −0.577 kN, TCD = −1.732 kN,
TDE = +0.866 kN. My notation: tension > 0, compression < 0.







Let’s try drawing an EFBD for the right side of the cut (“section”).







Here’s another truss problem that you can solve using the Method
of Sections. Find forces in members CE, CF, and DF, with
assumed force directions as shown.

I What happens if an assumed force direction is backwards?

I Where should we “section” the truss?

I Then what do we do next?





This is not really a “truss problem,” since we’re not asked to solve
for the internal forces in the truss, but it is an example of a pretty
tricky equilibrium problem.

Let’s try working through this together in class.

Notice, from the given dimensions: the angle of the incline is the
same as the interior angle at joints A and B of the truss. Also
notice pin/hinge support at A and roller support at B.











I The idea of computing centroids of simple and composite
shapes is very, very briefly introduced in O/K ch3 (in the
context of “distributed loads”), and will be discussed in much
more detail in O/K ch6 (for next Monday).

I Let’s go through one example using rectangles and triangles.
It will help you in cases when you need to solve for the
“reaction forces” on a beam that carries distributed loads.
(Example coming up next.)



What is Xcentroid for the shaded area?

(A) 0

(B) 3

(C) 6

(D) 9



What are the areas of the three individual polygons?

(A) 36, 16, 16

(B) 36, 16, 12

(C) 36, 16, 8

(D) 36, 16, 6



What are the Ycentroid values of the three individual polygons?

(A) 4, 9, 11

(B) 4, 9, 11.667

(C) 4, 9, 12

(D) 4, 9, 12.333

(E) 4, 9, 12.5

(F) 4, 9, 13

(G) 4, 9, 14



What is Ycentroid for the whole shaded area?

(A)
4 + 9 + 12

3
= 8.33

(B)

(4)(36) + (9)(16) + (12)(6)

36 + 16 + 6
= 6.21

(C)

(4)(36) + (9)(16) + (12)(6)

4 + 9 + 12
= 14.4

(D)

(42)(36) + (92)(16) + (122)(6)

36 + 16 + 6
= 47.2



There’s one problem similar to this (but using metric units) on
HW(?): Determine the support reactions at A and B.



This one is harder than your homework, because the distributed
load is non-uniform: Determine the support reactions at A and B.



Physics 8 — Wednesday, November 6, 2019
I I finally added summaries of key results from Onouye/Kane

ch1-ch7 to the “equation sheet.” I’m working on ch8, and I
may do ch9 as well (though ch9 will be XC for you).

I This week, you skimmed Ch4 (load tracing) and read Ch5
(strength of materials) of Onouye/Kane.

I HW9 due Friday. HW help: (Bill) Wed 4-6:30pm DRL 3C4,
(Grace/Brooke) Thu 6-8pm DRL 2C4.



Physics 8 — Friday, November 8, 2019

I Turn in HW9. Pick up HW10 handout in back corner.

I I finally added summaries of key results from Onouye/Kane
ch1-ch7 to the “equation sheet.” I’m working on ch8, and I
may do ch9 as well (though ch9 will be XC for you).

I This week, you skimmed Ch4 (load tracing) and read Ch5
(strength of materials) of Onouye/Kane. Next week, you’ll
read Ch6 (cross-sectional properties) and Ch7 (simple beams).

A tightly stretched “high wire” has length L = 50 m. It sags by
d = 1.0 m when a tightrope walker of mass M = 51 kg stands at
the center of the wire.

What is the tension in the wire? Is it possible to increase the
tension in the wire so that there is no sag at all (i.e. so that
d = 0)? What happens to the tension as we make the sag smaller
and smaller?



A tightly stretched “high wire” has length L = 50 m. It sags by
d = 1.0 m when a tightrope walker of mass M = 51 kg stands at
the center of the wire.

What is the tension in the wire?

Is it possible to increase the tension in the wire so that there is no
sag at all (i.e. so that d = 0)?

What happens to the tension as we make the sag smaller and
smaller?



Now suppose a 51 kg sign is suspended from a cable (but not at
the center), as shown below.

How would you find the tensions T1 and T2?

Once you know T1 and T2, what are the horizontal and vertical
forces exerted by the two supports on the cable?



How many equations does the “method of joints” allow us to write
down for this truss? (Consider how many joints the truss has.)

(A) 4 (B) 8 (C) 12 (D) 15



How many unknown internal forces (tensions or compressions) do
we need to determine when we “solve” this truss?

(A) 4 (B) 5 (C) 6 (D) 7



This is a “simply supported” truss. How many independent
“reaction forces” do the two supports exert on the truss? (If there
are independent horizontal and vertical components, count them as
separate forces.)

(A) 2 (B) 3 (C) 4 (D) 6



Notice that 8 = 5 + 3.

For a planar truss that is stable and that you can solve using the
equations of static equilibrium,

2Njoints = Nbars + 3

You get two force equations per joint. You need to solve for one
unknown tension/compression per bar plus three support
“reaction” forces.



What do we learn by writing∑
Fx = 0,

∑
Fy = 0,∑

Mz = 0 for the truss as a
whole? (Use joint A as pivot.)

(I write RAx , RAy , RCy for the
3 “reaction forces” exerted by
the supports on the truss.)

(A) RAy − 2 kN + RCy = 0,
RAx + 1 kN = 0,
−(2 kN)(2 m)− (1 kN)(2 m) + (RCy )(2 m) = 0

(B) RAy − 2 kN + RCy = 0,
RAx + 1 kN = 0,
−(2 kN)(2 m)− (1 kN)(1 m) + (RCy )(4 m) = 0

(C) RAy − 2 kN + RCy = 0,
RAx + 1 kN = 0,
−(2 kN)(2 m)− (1 kN)(2 m) + (RCy )(4 m) = 0



What two equations does the
“method of joints” let us write
for joint C ?

(Let the tension in member
i ↔ j be Tij . For compression
members, we will find Tij < 0.)

(A) TCD − TBC cos θ = 0
RCy − TBC sin θ = 0

(B) TCD − TBC sin θ = 0
RCy − TBC cos θ = 0

(C) TCD + TBC cos θ = 0
RCy + TBC sin θ = 0

(D) TCD + TBC sin θ = 0
RCy + TBC cos θ = 0



What two equations does the
“method of joints” let us write
for joint A ?

(Let the tension in member
i ↔ j be Tij . For compression
members, we will find Tij < 0.)

(A) RAx − TAD − TAB cos θ = 0
RAy − TAB sin θ = 0

(B) RAx − TAD − TAB sin θ = 0
RAy − TAB cos θ = 0

(C) RAx + TAD + TAB cos θ = 0
RAy + TAB sin θ = 0

(D) RAx + TAD + TAB sin θ = 0
RAy + TAB cos θ = 0



What two equations does the
“method of joints” let us write
for joint D ?

(Let the tension in member
i ↔ j be Tij . For compression
members, we will find Tij < 0.)

(A) −2 kN + TBD = 0 and −TAD + TCD = 0

(B) −2 kN + TBD = 0 and −TAD − TCD = 0

(C) −2 kN− TBD = 0 and −TAD + TCD = 0

(D) −2 kN− TBD = 0 and −TAD − TCD = 0



I named each member force Tij (for “tension”) and let Tij > 0
mean tension and Tij < 0 mean compression. Once you’ve solved
the truss, it’s best to draw the arrows with the correct signs for
clarity. (Next page.)



Forces redrawn with arrows in correct directions, now that we
know the sign of each force. Members AB and BC are in
compression. All other members are in tension.



Another option is to write down all 2J equations at once and to
type them into Mathematica, Maple, Wolfram Alpha, etc.

In[92] eq := {

RAx + TAB*cos + TAD == 0,

RAy + TAB*sin == 0,

-TAB*cos+TBC*cos+1 == 0,

-TBD-TAB*sin-TBC*sin == 0,

-TAD+TCD == 0,

-2 + TBD == 0,

-TCD - TBC*cos == 0,

RCy + TBC*sin == 0,

sin==1.0/Sqrt[5.0],

cos==2.0/Sqrt[5.0]

}

In[93] Solve[eq]

Out[93] {

RAx → -1.,

RAy → 0.75,

RCy → 1.25,

TAB → -1.67705,

TAD → 2.5,

TBC → -2.79508,

TBD → 2.,

TCD → 2.5,

cos → 0.894427,

sin → 0.447214

}



How many “reaction forces” are exerted by the supports (i.e.
exerted on the truss by the supports)?



How many internal forces (tensions or compressions in the
members) do we need to solve for to “solve” this truss?



Do you see any joint at which there are ≤ 2 unknown forces? If so,
we can start there. If not, we need to start with an EFBD for the
truss as a whole.



Try to guess RA,x , RA,y , and RD,y by inspection. Then let’s check
with the usual equations.



Now start from a joint having ≤ 2 unknown forces. In this case, I
just went through the joints alphabetically. You can make your life
easier by seeking out equations having just 1 unknown.



TAB = −0.577 kN, TAE = +0.289 kN, TBE = +0.577 kN,
TBC = −0.577 kN, TCE = −0.577 kN, TCD = −1.732 kN,
TDE = +0.866 kN. My notation: tension > 0, compression < 0.







Let’s try drawing an EFBD for the right side of the cut (“section”).







Here’s another truss problem that you can solve using the Method
of Sections. Find forces in members CE, CF, and DF, with
assumed force directions as shown.

I What happens if an assumed force direction is backwards?

I Where should we “section” the truss?

I Then what do we do next?





This is not really a “truss problem,” since we’re not asked to solve
for the internal forces in the truss, but it is an example of a pretty
tricky equilibrium problem.

Let’s try working through this together in class.

Notice, from the given dimensions: the angle of the incline is the
same as the interior angle at joints A and B of the truss. Also
notice pin/hinge support at A and roller support at B.











I The idea of computing centroids of simple and composite
shapes is very, very briefly introduced in O/K ch3 (in the
context of “distributed loads”), and will be discussed in much
more detail in O/K ch6 (for Monday).

I Let’s go through one example using rectangles and triangles.
It will help you in cases when you need to solve for the
“reaction forces” on a beam that carries distributed loads.
(Example coming up next.)



What is Xcentroid for the shaded area?

(A) 0

(B) 3

(C) 6

(D) 9



What are the areas of the three individual polygons?

(A) 36, 16, 16

(B) 36, 16, 12

(C) 36, 16, 8

(D) 36, 16, 6



What are the Ycentroid values of the three individual polygons?

(A) 4, 9, 11

(B) 4, 9, 11.667

(C) 4, 9, 12

(D) 4, 9, 12.333

(E) 4, 9, 12.5

(F) 4, 9, 13

(G) 4, 9, 14



What is Ycentroid for the whole shaded area?

(A)
4 + 9 + 12

3
= 8.33

(B)

(4)(36) + (9)(16) + (12)(6)

36 + 16 + 6
= 6.21

(C)

(4)(36) + (9)(16) + (12)(6)

4 + 9 + 12
= 14.4

(D)

(42)(36) + (92)(16) + (122)(6)

36 + 16 + 6
= 47.2



There’s one problem similar to this (but using metric units) on
HW(?): Determine the support reactions at A and B.



This one is harder than your homework, because the distributed
load is non-uniform: Determine the support reactions at A and B.



Physics 8 — Friday, November 8, 2019

I Turn in HW9. Pick up HW10 handout in back corner.

I I finally added summaries of key results from Onouye/Kane
ch1-ch7 to the “equation sheet.” I’m working on ch8, and I
may do ch9 as well (though ch9 will be XC for you).

I This week, you skimmed Ch4 (load tracing) and read Ch5
(strength of materials) of Onouye/Kane. Next week, you’ll
read Ch6 (cross-sectional properties) and Ch7 (simple beams).



Physics 8 — Monday, November 11, 2019

I Last week, you skimmed Ch4 (load tracing) and read Ch5
(strength of materials) of Onouye/Kane. This week, you’re
reading Ch6 (cross-sectional properties) and Ch7 (simple
beams).

How many “reaction forces” (or components thereof) are exerted
by the supports (i.e. exerted on the truss by the supports)?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5 (F) 6 (G) 7 (H) 8



How many “reaction forces” are exerted by the supports (i.e.
exerted on the truss by the supports)?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5 (F) 6 (G) 7 (H) 8



How many internal forces (tensions or compressions in the
members) do we need to solve for to “solve” this truss?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5 (F) 6 (G) 7 (H) 8



Do you see any joint at which there are ≤ 2 unknown forces (in
this context, total, internal+external)? If so, we can start there. If
not, we need to start with an EFBD for the truss as a whole.



Try to guess RA,x , RA,y , and RD,y by inspection. Then let’s check
with the usual equations.



Now start from a joint having ≤ 2 unknown forces. In this case, I
just went through the joints alphabetically. You can make your life
easier by seeking out equations having just 1 unknown.



TAB = −0.577 kN, TAE = +0.289 kN, TBE = +0.577 kN,
TBC = −0.577 kN, TCE = −0.577 kN, TCD = −1.732 kN,
TDE = +0.866 kN. My notation: tension > 0, compression < 0.







Let’s try drawing an EFBD for the right side of the cut (“section”).
(We’ll start next time with the Method of Sections for this truss.)







Here’s another truss problem that you can solve using the Method
of Sections. Find forces in members CE, CF, and DF, with
assumed force directions as shown.

I What happens if an assumed force direction is backwards?

I Where should we “section” the truss?

I Then what do we do next?





This is not really a “truss problem,” since we’re not asked to solve
for the internal forces in the truss, but it is an example of a pretty
tricky equilibrium problem.

Let’s try working through this together in class. (I think it’s
deviously tricky!)

Notice, from the given dimensions: the angle of the incline is the
same as the interior angle at joints A and B of the truss. Also
notice pin/hinge support at A and roller support at B.











I The idea of computing centroids of simple and composite
shapes is very, very briefly introduced in O/K ch3 (in the
context of “distributed loads”), and is discussed in much more
detail in O/K ch6 (you read this week, for Monday).

I Let’s go through one example using rectangles and triangles.
It will help you in cases when you need to solve for the
“reaction forces” on a beam that carries distributed loads.
(Example coming up next.)



What is Xcentroid for the shaded area?

(A) 0

(B) 3

(C) 6

(D) 9



What are the areas of the three individual polygons?

(A) 36, 16, 16

(B) 36, 16, 12

(C) 36, 16, 8

(D) 36, 16, 6



What are the Ycentroid values of the three individual polygons?

(A) 4, 9, 11

(B) 4, 9, 11.667

(C) 4, 9, 12

(D) 4, 9, 12.333

(E) 4, 9, 12.5

(F) 4, 9, 13

(G) 4, 9, 14



What is Ycentroid for the whole shaded area?

(A)
4 + 9 + 12

3
= 8.33

(B)

(4)(36) + (9)(16) + (12)(6)

36 + 16 + 6
= 6.21

(C)

(4)(36) + (9)(16) + (12)(6)

4 + 9 + 12
= 14.4

(D)

(42)(36) + (92)(16) + (122)(6)

36 + 16 + 6
= 47.2



There’s one problem similar to this (but using metric units) on
HW(?): Determine the support reactions at A and B.



This one is harder than your homework, because the distributed
load is non-uniform: Determine the support reactions at A and B.



Physics 8 — Monday, November 11, 2019

I Last week, you skimmed Ch4 (load tracing) and read Ch5
(strength of materials) of Onouye/Kane. This week, you’re
reading Ch6 (cross-sectional properties) and Ch7 (simple
beams).



Physics 8 — Wednesday, November 13, 2019
I Last week, you skimmed Ch4 (load tracing) and read Ch5

(strength of materials) of Onouye/Kane. This week, you read
Ch6 (cross-sectional properties) and Ch7 (simple beams).

I HW10 due Friday. HW help: (Bill) Wed 4-6:30pm DRL 3C4,
(Grace/Brooke) Thu 6-8pm DRL 2C4.



TAB = −0.577 kN, TAE = +0.289 kN, TBE = +0.577 kN,
TBC = −0.577 kN, TCE = −0.577 kN, TCD = −1.732 kN,
TDE = +0.866 kN. My notation: tension > 0, compression < 0.





Let’s try drawing an EFBD for the right side of the cut (“section”).







Here’s another truss problem that you can solve using the Method
of Sections. Find forces in members CE, CF, and DF, with
assumed force directions as shown.

I What happens if an assumed force direction is backwards?

I Where should we “section” the truss?

I Then what do we do next?



If all goes well, we should get
TCF = +3

√
2 kN, TCE = +8 kN, TDF = −11 kN.



I The idea of computing centroids of simple and composite
shapes is very, very briefly introduced in O/K ch3 (in the
context of “distributed loads”), and is discussed in much more
detail in O/K ch6 (you read this week, for Monday).

I Let’s go through one example using rectangles and triangles.
It will help you in cases when you need to solve for the
“reaction forces” on a beam that carries distributed loads.
(Example coming up next.)



What is Xcentroid for the shaded area?

(A) 0

(B) 3

(C) 6

(D) 9



What are the areas of the three individual polygons?

(A) 36, 16, 16

(B) 36, 16, 12

(C) 36, 16, 8

(D) 36, 16, 6



What are the Ycentroid values of the three individual polygons?

(A) 4, 9, 11

(B) 4, 9, 11.667

(C) 4, 9, 12

(D) 4, 9, 12.333

(E) 4, 9, 12.5

(F) 4, 9, 13

(G) 4, 9, 14



What is Ycentroid for the whole shaded area?

(A)
4 + 9 + 12

3
= 8.33

(B)

(4)(36) + (9)(16) + (12)(6)

36 + 16 + 6
= 6.21

(C)

(4)(36) + (9)(16) + (12)(6)

4 + 9 + 12
= 14.4

(D)

(42)(36) + (92)(16) + (122)(6)

36 + 16 + 6
= 47.2



There’s one problem similar to this (but using metric units) on
HW(?): Determine the support reactions at A and B.



This one is harder than your homework, because the distributed
load is non-uniform: Determine the support reactions at A and B.



This is not really a “truss problem,” since we’re not asked to solve
for the internal forces in the truss, but it is an example of a pretty
tricky equilibrium problem.

Let’s try working through this together in class. (I think it’s
deviously tricky!)

Notice, from the given dimensions: the angle of the incline is the
same as the interior angle at joints A and B of the truss. Also
notice pin/hinge support at A and roller support at B.











(A) (B) (C) (D)

Each shape has the same area: 24 squares. Which shape has the
largest Ix =

∫
y 2dA (“second moment of area about the x-axis”),

with y = 0 given by the faint horizontal red line at the center?



(A) (B) (C) (D)

Each shape has the same area: 24 squares. Which shape has the
smallest Ix =

∫
y 2dA (“second moment of area about the

x-axis”), with y = 0 given by the faint horizontal red line at the
center?



If you moved the x-axis down by a couple of grid units, what would
happen to Ix =

∫
y 2dA for each shape? Would Ix change?

Would Ix change by the same amount for each shape?

(Think: “parallel-axis theorem.”)



(A) (B) (C) (D)

Given that Ix =
∫

y 2dA = 1
12 bh3 for a rectangle centered at y = 0,

let’s use the parallel-axis theorem to calculate Ix for shapes A, B,
C , and D. For definiteness, let each graph-paper box be
1 cm× 1 cm. So the units will be cm4.



Let’s do the two rectangular shapes first, since they’re quick.

Then, the trick for the non-rectangular shapes is to use (from O/K
§6.3) the “parallel-axis theorem:”

Ix =
∑

Ixc +
∑

A d2
y

where each sum is over the simple shapes that compose the big
shape.

I Ixc is the simple shape’s own Ix value about its own centroid
(which is bh3/12 for a rectangle),

I A is the simple shape’s area, and

I dy is the vertical displacement of the simple shape’s centroid
from y = 0 (which should be the centroid of the big shape).









(A) (B) (C) (D)

Each shape has same area A = 24 cm2, but “second moment of
area” is IA = 1328 cm4, IB = 792 cm4, IC = 72 cm4, ID = 32 cm4.
That’s the motivation for the “I” shape of an I-beam: to get a
large “second moment of area,” I =

∫
y 2 dA. The deflection of a

beam under load is inversely proportional to I .





We can use the Method of Sections to study the internal forces
and torques (“moments”) within a beam. Consider this cantilever
beam (whose own weight we neglect here) supporting a
concentrated “load” force P at the far end. The left half is what
holds up the right half. What force and torque (“moment”) does
the left half exert on the right half? Does the answer depend on
where we “section” the beam?



We draw “load diagram” (basically a FBD for the beam), then the
“shear (V) diagram” below that, then the “moment (M) diagram”
below that. Sign conventions: V > 0 when beam LHS section is
pulling up on beam RHS; M > 0 when beam is smiling.



We draw “load diagram” (basically a FBD for the beam), then the
“shear (V) diagram” below that, then the “moment (M) diagram”
below that. Sign conventions: V > 0 when beam LHS section is
pulling up on beam RHS; M > 0 when beam is smiling.



Sign conventions: V > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.



Sign conventions: V > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.



Let’s try a mirror image of the same cantilever beam. Sign
conventions: V > 0 when beam LHS section is pulling up on beam
RHS; M > 0 when beam is smiling.



Sign conventions: V > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.



Sign conventions: V > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.



Physics 8 — Wednesday, November 13, 2019

I Last week, you skimmed Ch4 (load tracing) and read Ch5
(strength of materials) of Onouye/Kane. This week, you read
Ch6 (cross-sectional properties) and Ch7 (simple beams).

I HW10 due Friday. HW help: (Bill) Wed 4-6:30pm DRL 3C4,
(Grace/Brooke) Thu 6-8pm DRL 2C4.



Physics 8 — Friday, November 15, 2019

I Turn in HW10. Pick up HW11 handout. HW11 is “due” next
Friday, but you can turn it in on Monday, Nov 25, just in case
it takes us an extra day to get through the material on beams.

I This week, you read Ch6 (cross-sectional properties) and Ch7
(simple beams). Next week, you’ll read Ch8 (more details on
beams).



I The idea of computing centroids of simple and composite
shapes is very, very briefly introduced in O/K ch3 (in the
context of “distributed loads”), and is discussed in much more
detail in O/K ch6 (you read this week, for Monday).

I Let’s go through one example using rectangles and triangles.
It will help you in cases when you need to solve for the
“reaction forces” on a beam that carries distributed loads.
(Example coming up next.)



What is Xcentroid for the shaded area?

(A) 0

(B) 3

(C) 6

(D) 9



What are the areas of the three individual polygons?

(A) 36, 16, 16

(B) 36, 16, 12

(C) 36, 16, 8

(D) 36, 16, 6



What are the Ycentroid values of the three individual polygons?

(A) 4, 9, 11

(B) 4, 9, 11.667

(C) 4, 9, 12

(D) 4, 9, 12.333

(E) 4, 9, 12.5

(F) 4, 9, 13

(G) 4, 9, 14



What is Ycentroid for the whole shaded area?

(A)
4 + 9 + 12

3
= 8.33

(B)

(4)(36) + (9)(16) + (12)(6)

36 + 16 + 6
= 6.21

(C)

(4)(36) + (9)(16) + (12)(6)

4 + 9 + 12
= 14.4

(D)

(42)(36) + (92)(16) + (122)(6)

36 + 16 + 6
= 47.2



There was one problem similar to this (but using metric units) on
HW10: Determine the support reactions at A and B.





This one is harder than your homework, because the distributed
load is non-uniform: Determine the support reactions at A and B.





This is not really a “truss problem,” since we’re not asked to solve
for the internal forces in the truss, but it is an example of a pretty
tricky equilibrium problem.

Let’s try working through this together in class. (I think it’s
deviously tricky!)

Notice, from the given dimensions: the angle of the incline is the
same as the interior angle at joints A and B of the truss. Also
notice pin/hinge support at A and roller support at B.











(A) (B) (C) (D)

Each shape has the same area: 24 squares. Which shape has the
largest Ix =

∫
y 2dA (“second moment of area about the x-axis”),

with y = 0 given by the faint horizontal red line at the center?



(A) (B) (C) (D)

Each shape has the same area: 24 squares. Which shape has the
smallest Ix =

∫
y 2dA (“second moment of area about the

x-axis”), with y = 0 given by the faint horizontal red line at the
center?



If you moved the x-axis down by a couple of grid units, what would
happen to Ix =

∫
y 2dA for each shape? Would Ix change?

Would Ix change by the same amount for each shape?

(Think: “parallel-axis theorem.”)



(A) (B) (C) (D)

Given that Ix =
∫

y 2dA = 1
12 bh3 for a rectangle centered at y = 0,

let’s use the parallel-axis theorem to calculate Ix for shapes A, B,
C , and D. For definiteness, let each graph-paper box be
1 cm× 1 cm. So the units will be cm4.



Let’s do the two rectangular shapes first, since they’re quick.

Then, the trick for the non-rectangular shapes is to use (from O/K
§6.3) the “parallel-axis theorem:”

Ix =
∑

Ixc +
∑

A d2
y

where each sum is over the simple shapes that compose the big
shape.

I Ixc is the simple shape’s own Ix value about its own centroid
(which is bh3/12 for a rectangle),

I A is the simple shape’s area, and

I dy is the vertical displacement of the simple shape’s centroid
from y = 0 (which should be the centroid of the big shape).









(A) (B) (C) (D)

Each shape has same area A = 24 cm2, but “second moment of
area” is IA = 1328 cm4, IB = 792 cm4, IC = 72 cm4, ID = 32 cm4.
That’s the motivation for the “I” shape of an I-beam: to get a
large “second moment of area,” I =

∫
y 2 dA. The deflection of a

beam under load is inversely proportional to I .





We can use the Method of Sections to study the internal forces
and torques (“moments”) within a beam. Consider this cantilever
beam (whose own weight we neglect here) supporting a
concentrated “load” force P at the far end. The left half is what
holds up the right half. What force and torque (“moment”) does
the left half exert on the right half? Does the answer depend on
where we “section” the beam?



We draw “load diagram” (basically a FBD for the beam), then the
“shear (V) diagram” below that, then the “moment (M) diagram”
below that. Sign conventions: V > 0 when beam LHS section is
pulling up on beam RHS; M > 0 when beam is smiling.



We draw “load diagram” (basically a FBD for the beam), then the
“shear (V) diagram” below that, then the “moment (M) diagram”
below that. Sign conventions: V > 0 when beam LHS section is
pulling up on beam RHS; M > 0 when beam is smiling.



Sign conventions: V > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.



Sign conventions: V > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.



Let’s try a mirror image of the same cantilever beam. Sign
conventions: V > 0 when beam LHS section is pulling up on beam
RHS; M > 0 when beam is smiling.



Sign conventions: V > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.



Sign conventions: V > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.



Physics 8 — Friday, November 15, 2019

I Turn in HW10. Pick up HW11 handout. HW11 is “due” next
Friday, but you can turn it in on Monday, Nov 25, just in case
it takes us an extra day to get through the material on beams.

I This week, you read Ch6 (cross-sectional properties) and Ch7
(simple beams). Next week, you’ll read Ch8 (more details on
beams).



Physics 8 — Monday, November 18, 2019
I HW11 is “due” on Friday, but you can turn it in on Monday,

Nov 25, just in case it takes us an extra day to get through
the material on beams.

I Last week, you read Ch6 (cross-sectional properties) and Ch7
(simple beams). This week, read Ch8 (more about beams).



(A) (B) (C) (D)

Each shape has the same area: 24 squares. Which shape has the
largest Ix =

∫
y 2dA (“second moment of area about the x-axis”),

with y = 0 given by the faint horizontal red line at the center?



(A) (B) (C) (D)

Each shape has the same area: 24 squares. Which shape has the
smallest Ix =

∫
y 2dA (“second moment of area about the

x-axis”), with y = 0 given by the faint horizontal red line at the
center?



If you moved the x-axis down by a couple of grid units, what would
happen to Ix =

∫
y 2dA for each shape? Would Ix change?

Would Ix change by the same amount for each shape?

(A) yes (B) no

(Think: “parallel-axis theorem.”)



(A) (B) (C) (D)

Given that Ix =
∫

y 2dA = 1
12 bh3 for a rectangle centered at y = 0,

let’s use the parallel-axis theorem to calculate Ix for shapes A, B,
C , and D. For definiteness, let each graph-paper box be
1 cm× 1 cm. So the units will be cm4.



Let’s do the two rectangular shapes first, since they’re quick.

Then, the trick for the non-rectangular shapes is to use (from O/K
§6.3) the “parallel-axis theorem:”

Ix =
∑

Ixc +
∑

A d2
y

where each sum is over the simple shapes that compose the big
shape.

I Ixc is the simple shape’s own Ix value about its own centroid
(which is bh3/12 for a rectangle),

I A is the simple shape’s area, and

I dy is the vertical displacement of the simple shape’s centroid
from y = 0 (which should be the centroid of the big shape).









(A) (B) (C) (D)

Each shape has same area A = 24 cm2, but “second moment of
area” is IA = 1328 cm4, IB = 792 cm4, IC = 72 cm4, ID = 32 cm4.
That’s the motivation for the “I” shape of an I-beam: to get a
large “second moment of area,” I =

∫
y 2 dA. The deflection of a

beam under load is inversely proportional to I .





We can use the Method of Sections to study the internal forces
and torques (“moments”) within a beam. Consider this cantilever
beam (whose own weight we neglect here) supporting a
concentrated “load” force P at the far end. The left half is what
holds up the right half. What force and torque (“moment”) does
the left half exert on the right half? Does the answer depend on
where we “section” the beam?



We draw “load diagram” (basically a FBD for the beam), then the
“shear (V) diagram” below that, then the “moment (M) diagram”
below that. Sign conventions: V > 0 when beam LHS section is
pulling up on beam RHS; M > 0 when beam is smiling.

Another way to state the V (x) sign convention: V (x) is the
running sum of all (upward minus downward) forces exerted on the
beam, from the left side up to and including x .



We draw “load diagram” (basically a FBD for the beam), then the
“shear (V) diagram” below that, then the “moment (M) diagram”
below that. Sign conventions: V > 0 when beam LHS section is
pulling up on beam RHS; M > 0 when beam is smiling.



Sign conventions: V > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.



Sign conventions: V > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.



Let’s try a mirror image of the same cantilever beam. Sign
conventions: V > 0 when beam LHS section is pulling up on beam
RHS; M > 0 when beam is smiling.



Sign conventions: V > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.



Sign conventions: V (x) > 0 when beam left of x is pulling up on
beam right of x . M(x) > 0 when beam is smiling.

Transverse shear V (x) is
the running sum of forces
on beam, from 0 . . . x ,
where upward = positive.

Bending moment M(x) is
the torque exerted by each
side of the beam, cut at x ,
on the other side; but
beware of sign convention.

V (x) =
d

dx
M(x)

The V diagram graphs the
slope of the M diagram.



Draw V and M for this “simply supported” beam: V (x) > 0 when
beam 0 . . . x pulls up on beam x . . . L. M > 0 when beam smiles.



V (x) =
d

dx
M(x)

The shear (V ) diagram
equals the slope of the
moment (M) diagram.

M(x) =

∫
V (x)dx

But be careful about
the M values at the
ends — depends how
the beam is supported.
A free, hinged, or
roller-supported end
has M = 0: support
exerts no torque on
that end. Fixed end of
cantilever has M 6= 0.



Let’s try drawing load, V , and M diagrams for this simply-
supported beam. Pretend the units are meters and kilonewtons
rather than the original drawing’s feet and kilopounds (“kips”).





Shear (V) and moment (M) diagrams:

I First draw a “load diagram,” which is an EFBD that shows all
of the vertical forces acting on the beam.

I The “shear diagram” V (x) graphs the running sum of all
vertical forces (both supports and loads) acting on the beam,
from the left side up to x , where upward = positive,
downward = negative.

I To draw the “moment diagram” M(x), note that V is the
slope of M:

V (x) =
d

dx
M(x)

I The change in M from x1 to x2 is given by

M2 −M1 = (x2 − x1) V average
1→2

I If an end of a beam is unsupported (“free”), is hinge/pin
supported, or is roller supported, then M = 0 at that end.
You can only have M 6= 0 at an end if the support at that end
is capable of exerting a torque on the beam — for example,
the fixed end of a cantilever has M 6= 0.



Draw shear (V ) and moment (M) diagrams for this beam! Tricky!
First one needs to solve for the support (“reaction”) forces.

Note: in solving for the support forces, you replace distributed load
w with equivalent point load. But when you draw the load
diagram to find V and M, you need to keep w in its original form.



Remember that V (x) is the running sum, from LHS to x , of
vertical forces acting on the beam, with upward=positive.





Neat trick: M2 −M1 = (V average
1→2 )(x2 − x1)



Draw load, V , and M diagrams for this simply supported beam
with a partial uniform load.









Why do we care about these beam diagrams, anyway? Usually the
floor of a structure must carry a specified weight per unit area.
The beams (beams, girders, joists, etc.) must be strong enough to
support this load without failing and must be stiff enough to
support this load without excessive deflection.



Beam criteria:

I Normal stress in the extreme fibers of the beam (farthest from
neutral surface) must be smaller than the allowable bending
stress, Fb, which depends on the material (wood, steel, etc.).

I This happens where M(x) has largest magnitude.

I Shear stress (in both y (“transverse”) and x (“longitudinal”)
must be smaller than the allowable shear stress, Fv , which is
also a property of the material (wood, steel, etc.).

I This happens where V (x) has largest magnitude, and
(surprisingly) is largest near the neutral surface.

I The above two are “strength” criteria. The third one is a
“stiffness” criterion:

I The maximum deflection under load must satisfy the building
code: typically ∆ymax < L/360.

I For a uniform load, this happens farthest away from the
supports. If deflection is too large, plaster ceilings develop
cracks, floors feel uncomfortably bouncy or sloped.

I The book also notes buckling as a beam failure mode.



(In this illustration, bottom is in tension, top is in compression, as
in a “simply supported” beam.)



A big topic from this week’s reading was to see how an initially
horizontal beam responds to the bending moment M(x) by
deforming into a curved shape.

(In this illustration, top is in tension, as in a cantilever.)



Key idea: bending moment M ∝ 1
R , where R is the radius of

curvature of the beam. For constant M, vertical lines converge
toward common center of curvature.

strain =
∆L

L0
=

y

R

where y = 0 is the
neutral surface.

So in this case y > 0 is
in tension and y < 0 is
in compression.



If you think of wood fibers running along the beam’s axis, then the
fibers above the neutral surface (y > 0) are stretched in proportion
to y , and the fibers below the neutral surface (y < 0) are
compressed in proportion to |y |.

strain =
∆L

L
=

y

R



Now remember that ∆L
L is called (axial) strain, and force per unit

area is called stress. For an elastic material, strain (e) ∝ stress (f ).

∆L

L
=

1

E
× Force

Area
=

1

E
× f e =

1

E
× f



In the elastic region, strain (e = ∆L/L) is proportional to stress

(f = F/A). f = Ee . The slope E is Young’s modulus.



Plugging in f = Ee to the bending-beam diagram:

y

R
=

∆L

L
= e =

f

E

we find the force-per-unit area (stress) exerted by the fibers is

f =
Ey

R



The force-per-unit area (stress) exerted by the fibers is

f =
Ey

R

while the torque (bending moment dM, pivot about N.A.) exerted
by each tiny fiber of area dA is proportional to its lever arm y

dM = y dF = y f dA = y

(
Ey

R

)
dA =

E

R
y 2 dA



So the bending moment M exerted by a curved beam is

M =
E

R

∫
y 2 dA =

EI

R

where R is the curved beam’s radius of curvature and I =
∫

y 2 dA
is the “second moment of area” a.k.a. “area moment of inertia.”



M =
E

R

∫
y 2dA =

EI

R

Meanwhile, the vertical deflection ∆ of a point along the beam is
related to its curvature by (in limit where ∆� R)

1

R
≈ d2∆

dx2

so you can integrate the M(x) curve twice to get deflection

d2∆

dx2
=

M

EI
⇒ ∆(x) =

1

EI

∫
dx

∫
M(x) dx



Calculus digression (not important — but you may be curious):

You may have seen in calculus that the “curvature” (which means
1/R, where R is the radius of curvature) of a function y = f (x) is

1

R
=

y ′′

(1 + (y ′)2)3/2

We are working in the limit y ′ � 1, so

1

R
≈ y ′′

That’s how we arrived at

1

R
≈ d2∆

dx2



M =
E

R

∫
y 2dA =

EI

R

Meanwhile, the vertical deflection ∆ of a point along the beam is
related to its curvature by (in limit where ∆� R)

1

R
≈ d2∆

dx2

so you can integrate the M(x) curve twice to get deflection

d2∆

dx2
=

M

EI
⇒ ∆(x) =

1

EI

∫
dx

∫
M(x) dx



This Onouye/Kane figure
writes “y” here for
deflection, but I wrote
“∆” for deflection on the
preceding pages (and they
usually do, too), because
we were already using y
for “distance above the
neutral surface.”

So you integrate M(x)/EI
twice w.r.t. x to get the
deflection ∆(x).

The bending moment
M(x) = EI d2∆/dx2,
where E is Young’s
modulus and I is second
moment of area.



The most common deflection results can be found in tables.



FYI, here’s where that crazy (5wL4)/(384EI ) comes from!

(continued on next page)



Here’s where that crazy (5wL4)/(384EI ) comes from!

The 2 integration constants can be tricky. Simply supported:
∆(0) = ∆(L) = 0. (For cantilever, ∆(0) = ∆′(0) = 0 instead.)



Maximum deflection is one of several beam-design criteria. You
can see now how it relates to the load and M(x) diagrams: ∆max

comes from integrating M(x)/(EI ) twice w.r.t. x to get ∆(x).

For point load P at the end of a cantilever (for example), you get

∆max =
PL3

3EI

For uniform load w on simply-supported beam, you get

∆max =
5wL4

384EI

You just look these results up, or use a computer to calculate them.

Deflection is proportional to load, and inversely proportional to
Young’s modulus and to the second moment of area.

I More load → more deflection

I Stiffer material → less deflection

I Cross-section with larger I =
∫

y 2 dA → less deflection



Another beam-design criterion is maximum bending stress: the
fibers farthest from the neutral surface experience the largest
tension or compression, hence largest bending stress.

When we section the beam at x , bending moment M(x) is

M =
EI

R

which we can solve for the radius of curvature R = EI/M. Then
the stress a distance y above the neutral surface is

f = Ee = E
y

R
=

E y

(EI/M)
=

M y

I



The bending stress a distance y above the neutral surface is

f =
M y

I

The largest bending stress happens in the fibers farthest above or
below the neutral surface. Call this largest distance ymax ≡ c .

fmax =
M c

I
=

M

(I/c)
=

M

S

The ratio S = I/c is called “section modulus.”



Bending stress in fibers farthest from neutral surface:

fmax =
M

(I/c)
=

M

S

So you sketch your load, V , and M diagrams, and you find Mmax,
i.e. the largest magnitude of M(x).

Then, the material you are using for beams (wood, steel, etc.) has
a maximum allowable bending stress, Fb.

So then you look in your table of beam cross-sections and choose

S ≥ Srequired =
Mmax

Fb



Beam criteria:

I Normal stress in the extreme fibers of the beam (farthest from
neutral surface) must be smaller than the allowable bending
stress, Fb, which depends on the material (wood, steel, etc.).

I This happens where M(x) has largest magnitude.

I Shear stress (in both y (“transverse”) and x (“longitudinal”)
must be smaller than the allowable shear stress, Fv , which is
also a property of the material (wood, steel, etc.).

I This happens where V (x) has largest magnitude, and
(surprisingly) is largest near the neutral surface.

I The above two are “strength” criteria. The third one is a
“stiffness” criterion:

I The maximum deflection under load must satisfy the building
code: typically ∆ymax < L/360.

I For a uniform load, this happens farthest away from the
supports. If deflection is too large, plaster ceilings develop
cracks, floors feel uncomfortably bouncy or sloped.

I The book also notes longitudinal buckling as a failure mode.



Maximum deflection is one of several beam-design criteria. ∆max

comes from integrating M(x)/(EI ) twice w.r.t. x to get ∆(x).

For uniform load w on simply-supported beam, you get

∆max =
5wL4

384EI

You just look these results up, or use a computer to calculate
them. But I had great fun calculating the 5/384 myself!

Deflection is proportional to load, and inversely proportional to
Young’s modulus and to the second moment of area.

I More load → more deflection

I Stiffer material → less deflection

I Cross-section with larger I =
∫

y 2 dA → less deflection

Notice that putting a column in the middle of a long, uniformly
loaded beam reduces ∆max by a factor of 24 = 16. Alternatively,
if you want to span a large, open space without intermediate
columns or bearing walls, you need beams with large I .



Bending beam into circular arc of radius R gives e =
∆L

L0
=

y

R
,

strain e vs. distance y above the neutral surface.

Hooke’s Law f = Ee

gives stress f =
E y

R
Torque exerted by
fibers of beam is

M =

∫
y (f dA) =

y
E y

R
dA =

E

R
y 2 dA

M =
EI

R

Eliminate R ⇒

f =
M y

I
=

M

I/y



The bending stress a distance y above the neutral surface is

f =
M y

I

The largest bending stress happens in the fibers farthest above or
below the neutral surface. Call this largest distance ymax ≡ c .

fmax =
Mmax c

I
=

Mmax

(I/c)
=

Mmax

S

The ratio S = I/c is called “section modulus.” The load diagram
gives you Mmax. Each material (wood, steel, etc.) has allowed
bending stress fmax. Then Smin tells you how big a beam you need.



Example (using metric units!): A cantilever beam has a span of
3.0 m with a single concentrated load of 100 kg at its unsupported
end. If the beam is made of timber having allowable bending stress
Fb = 1.1× 107 N/m2 (was 1600 psi in US units), what minimum
section modulus is required?

What is the smallest “2×” dimensional lumber (width = 1.5 inch
= 0.038 m) whose cross-section satisfies this strength criterion?

Would this beam also satisfy a ∆max < L/240 (maximum
deflection) stiffness criterion? If not, what standard “2×”
cross-section is needed instead?

∆max = PL3/(3EI ) for a cantilever with concentrated load at end.
Use Young’s modulus E = 1.1× 1010 N/m2 for southern pine.





Smin =
|Mmax|
fallowed

=
PL

Fb
=

(980N)(3m)

1.1× 107 N/m2
= 26.7× 10−5 m3

∆allowed =
L

240
=

3.0m

240
= 0.0125 m

∆max =
PL3

3EI
⇒ Imin =

PL3

3E ∆allowed
= 64.2× 10−6 m4



I worked out b, h, I , and S = I/c values in metric units for
standard “2×” dimensional lumber.

b b h h I = bh3/12 S = bh2/6
2× 4 1.5 in .038m 3.5 in .089m 2.23× 10−6 m4 5.02× 10−5 m3

2× 6 1.5 in .038m 5.5 in .140m 8.66× 10−6 m4 12.4× 10−5 m3

2× 8 1.5 in .038m 7.5 in .191m 21.9× 10−6 m4 23.0× 10−5 m3

2× 10 1.5 in .038m 9.5 in .241m 44.6× 10−6 m4 37.0× 10−5 m3

2× 12 1.5 in .038m 11.5 in .292m 79.1× 10−6 m4 54.2× 10−5 m3

The numbers are nicer if you use centimeters instead of meters,
but then you have the added hassle of remembering to convert
back to meters in calculations.

b b h h I = bh3/12 S = bh2/6
2× 4 1.5 in 3.8 cm 3.5 in 8.9 cm 223 cm4 50.2 cm3

2× 6 1.5 in 3.8 cm 5.5 in 14.0 cm 866 cm4 124 cm3

2× 8 1.5 in 3.8 cm 7.5 in 19.1 cm 2195 cm4 230 cm3

2× 10 1.5 in 3.8 cm 9.5 in 24.1 cm 4461 cm4 370 cm3

2× 12 1.5 in 3.8 cm 11.5 in 29.2 cm 7913 cm4 542 cm3



Minor variation on same problem: A cantilever beam has a span of
3.0 m with a uniform distributed load of 33.3 kg/m along its entire
length. If we use timber with allowable bending stress
Fb = 1.1× 107 N/m2, what minimum section modulus is required?

What is the smallest “2×” dimensional lumber (width = 1.5 inch
= 0.038 m) whose cross-section satisfies this strength criterion?

Would this beam also satisfy a ∆max < L/240 (maximum
deflection) stiffness criterion? If not, what standard “2×”
cross-section is needed instead?

∆max = wL4/(8EI ) for a cantilever with uniform load. Use
Young’s modulus E = 1.1× 1010 N/m2 for southern pine.





Smin =
|Mmax|
fallowed

=
wL2/2

Fb
=

(326N/m)(3m)2/2

1.1× 107 N/m2
= 13.3× 10−5 m3

∆allowed =
L

240
=

3.0m

240
= 0.0125 m

∆max =
wL4

8EI
⇒ Imin =

wL4

8E ∆allowed
= 24.0× 10−6 m4



(Here’s a homework problem from ARCH 435.)

Actually, Home Depot’s 2× 10 really is 9.5 inches deep, not 9.25
inches, and 2× 12 really is 11.5 inches deep.



A timber floor system uses joists made of “2× 10” dimensional
lumber. Each joist spans a length of 4.27 m (simply supported).
The floor carries a load of 2400 N/m2. At what spacing should the
joists be placed, in order not to exceed allowable bending stress
Fb = 10000 kN/m2 (1.0× 107 N/m2)?

(We should get an answer around 24 inches = 0.61 meters.)









If we have time left, let’s solve this truss problem together. It’s
actually pretty quick, using method of sections. First solve for
vertical support force at A, then analyze left side of section.





Physics 8 — Monday, November 18, 2019

I HW11 is “due” on Friday, but you can turn it in on Monday,
Nov 25, just in case it takes us an extra day to get through
the material on beams.

I Last week, you read Ch6 (cross-sectional properties) and Ch7
(simple beams). This week, read Ch8 (more about beams).



Physics 8 — Wednesday, November 20, 2019

I HW11 is “due” on Friday, but you can turn it in on Monday,
Nov 25, as it will probably take us an extra day to get through
the material on beams.

I HW help: (Bill) Wed 4-6:30pm DRL 3C4, (Brooke/Grace)
Thu 6-8pm DRL 2C4.

I This week, read/skim O/K Ch8 (more about beams).

I You may find my “equation sheet” to be a helpful summary of
the key results from the Onouye/Kane reading:

http://positron.hep.upenn.edu/p8/files/equations.pdf#page=12

http://positron.hep.upenn.edu/p8/files/equations.pdf#page=12


Here’s what puzzled me about this statics problem last week: You
can evaluate the moment (about A) due to the horizontal 1 kN
force in two ways — with the same result, of course:

I how we did it: −1 kN × 6.5m sin(2θ) = 4.615 kN ·m
I clever, tricker way: −1 kN × 12m sin θ = 4.615 kN ·m

We discovered a geometrical proof that sin(2θ) = 2 cos θ sin θ.



Last time we worked out V (x) and M(x) for this cantilever beam.

Sign conventions: V (x) > 0 when beam left of x is pulling up on
beam right of x . M(x) > 0 when beam is smiling.

Transverse shear V (x) is
the running sum of forces
on beam, from 0 . . . x ,
where upward = positive.

Bending moment M(x) is
the torque exerted by each
side of the beam, cut at x ,
on the other side; but
beware of sign convention.

V (x) =
d

dx
M(x)

The V diagram graphs the
slope of the M diagram.



Draw V and M for this “simply supported” beam: V (x) is running
sum (up − down) of forces on beam. M > 0 when beam smiles.



V (x) =
d

dx
M(x)

The shear (V ) diagram
equals the slope of the
moment (M) diagram.

M(x) =

∫
V (x)dx

But be careful about
the M values at the
ends — depends how
the beam is supported.
A free, hinged, or
roller-supported end
has M = 0: support
exerts no torque on
that end. Fixed end of
cantilever has M 6= 0.



Let’s try drawing load, V , and M diagrams for this simply-
supported beam. Pretend the units are meters and kilonewtons
rather than the original drawing’s feet and kilopounds (“kips”).





Shear (V) and moment (M) diagrams:

I First draw a “load diagram,” which is an EFBD that shows all
of the vertical forces acting on the beam.

I The “shear diagram” V (x) graphs the running sum of all
vertical forces (both supports and loads) acting on the beam,
from the left side up to x , where upward = positive,
downward = negative.

I To draw the “moment diagram” M(x), note that V is the
slope of M:

V (x) =
d

dx
M(x)

I The change in M from x1 to x2 is given by

M2 −M1 = (x2 − x1) V average
1→2

I If an end of a beam is unsupported (“free”), is hinge/pin
supported, or is roller supported, then M = 0 at that end.
You can only have M 6= 0 at an end if the support at that end
is capable of exerting a torque on the beam — for example,
the fixed end of a cantilever has M 6= 0.



Let’s try drawing V (x) and M(x) diagrams for a simply supported
beam with uniform distributed load, as shown.











Questions for Prof. Farley!

I How do we explain the variation of shear stress across the
cross-section of a beam — for example: where is shear stress
largest for a simply supported beam with uniform distributed
load, rectangular cross-section?

I Should we add to this course some physics of masonry
structures, e.g. a classic Roman arch?

I For design criteria of a structure (O/K ch1), what is meant by
redundancy and continuity?

I Z.E. question: how to study moments in complex shapes?

I Any others?!



Draw shear (V ) and moment (M) diagrams for this beam! Tricky!
First one needs to solve for the support (“reaction”) forces.

Note: in solving for the support forces, you replace distributed load
w with equivalent point load. But when you draw the load
diagram to find V and M, you need to keep w in its original form.



Remember that V (x) is the running sum, from LHS to x , of
vertical forces acting on the beam, with upward=positive.





Neat trick: M2 −M1 = (V average
1→2 )(x2 − x1)



Draw load, V , and M diagrams for this simply supported beam
with a partial uniform load.









Why do we care about these beam diagrams, anyway? Usually the
floor of a structure must carry a specified weight per unit area.
The beams (beams, girders, joists, etc.) must be strong enough to
support this load without failing and must be stiff enough to
support this load without excessive deflection.



Beam criteria:

I Normal stress in the extreme fibers of the beam (farthest from
neutral surface) must be smaller than the allowable bending
stress, Fb, which depends on the material (wood, steel, etc.).

I This happens where M(x) has largest magnitude.

I Shear stress (in both y (“transverse”) and x (“longitudinal”)
must be smaller than the allowable shear stress, Fv , which is
also a property of the material (wood, steel, etc.).

I This happens where V (x) has largest magnitude, and
(surprisingly) is largest near the neutral surface.

I The above two are “strength” criteria. The third one is a
“stiffness” criterion:

I The maximum deflection under load must satisfy the building
code: typically ∆ymax < L/360.

I For a uniform load, this happens farthest away from the
supports. If deflection is too large, plaster ceilings develop
cracks, floors feel uncomfortably bouncy or sloped.

I The book also notes buckling as a beam failure mode.



(In this illustration, bottom is in tension, top is in compression, as
in a “simply supported” beam.)



A big topic from this week’s reading was to see how an initially
horizontal beam responds to the bending moment M(x) by
deforming into a curved shape.

(In this illustration, top is in tension, as in a cantilever.)



Key idea: bending moment M ∝ 1
R , where R is the radius of

curvature of the beam. For constant M, vertical lines converge
toward common center of curvature.

strain =
∆L

L0
=

y

R

where y = 0 is the
neutral surface.

So in this case y > 0 is
in tension and y < 0 is
in compression.



If you think of wood fibers running along the beam’s axis, then the
fibers above the neutral surface (y > 0) are stretched in proportion
to y , and the fibers below the neutral surface (y < 0) are
compressed in proportion to |y |.

strain =
∆L

L
=

y

R



Now remember that ∆L
L is called (axial) strain, and force per unit

area is called stress. For an elastic material, strain (e) ∝ stress (f ).

∆L

L
=

1

E
× Force

Area
=

1

E
× f e =

1

E
× f



In the elastic region, strain (e = ∆L/L) is proportional to stress

(f = F/A). f = Ee . The slope E is Young’s modulus.



Plugging in f = Ee to the bending-beam diagram:

y

R
=

∆L

L
= e =

f

E

we find the force-per-unit area (stress) exerted by the fibers is

f =
Ey

R



The force-per-unit area (stress) exerted by the fibers is

f =
Ey

R

while the torque (bending moment dM, pivot about N.A.) exerted
by each tiny fiber of area dA is proportional to its lever arm y

dM = y dF = y f dA = y

(
Ey

R

)
dA =

E

R
y 2 dA



So the bending moment M exerted by a curved beam is

M =
E

R

∫
y 2 dA =

EI

R

where R is the curved beam’s radius of curvature and I =
∫

y 2 dA
is the “second moment of area” a.k.a. “area moment of inertia.”



M =
E

R

∫
y 2dA =

EI

R

Meanwhile, the vertical deflection ∆ of a point along the beam is
related to its curvature by (in limit where ∆� R)

1

R
≈ d2∆

dx2

so you can integrate the M(x) curve twice to get deflection

d2∆

dx2
=

M

EI
⇒ ∆(x) =

1

EI

∫
dx

∫
M(x) dx



Calculus digression (not important — but you may be curious):

You may have seen in calculus that the “curvature” (which means
1/R, where R is the radius of curvature) of a function y = f (x) is

1

R
=

y ′′

(1 + (y ′)2)3/2

We are working in the limit y ′ � 1, so

1

R
≈ y ′′

That’s how we arrived at

1

R
≈ d2∆

dx2



M =
E

R

∫
y 2dA =

EI

R

Meanwhile, the vertical deflection ∆ of a point along the beam is
related to its curvature by (in limit where ∆� R)

1

R
≈ d2∆

dx2

so you can integrate the M(x) curve twice to get deflection

d2∆

dx2
=

M

EI
⇒ ∆(x) =

1

EI

∫
dx

∫
M(x) dx



This Onouye/Kane figure
writes “y” here for
deflection, but I wrote
“∆” for deflection on the
preceding pages (and they
usually do, too), because
we were already using y
for “distance above the
neutral surface.”

So you integrate M(x)/EI
twice w.r.t. x to get the
deflection ∆(x).

The bending moment
M(x) = EI d2∆/dx2,
where E is Young’s
modulus and I is second
moment of area.



The most common deflection results can be found in tables.



FYI, here’s where that crazy (5wL4)/(384EI ) comes from!

(continued on next page)



Here’s where that crazy (5wL4)/(384EI ) comes from!

The 2 integration constants can be tricky. Simply supported:
∆(0) = ∆(L) = 0. (For cantilever, ∆(0) = ∆′(0) = 0 instead.)



Maximum deflection is one of several beam-design criteria. You
can see now how it relates to the load and M(x) diagrams: ∆max

comes from integrating M(x)/(EI ) twice w.r.t. x to get ∆(x).

For point load P at the end of a cantilever (for example), you get

∆max =
PL3

3EI

For uniform load w on simply-supported beam, you get

∆max =
5wL4

384EI

You just look these results up, or use a computer to calculate them.

Deflection is proportional to load, and inversely proportional to
Young’s modulus and to the second moment of area.

I More load → more deflection

I Stiffer material → less deflection

I Cross-section with larger I =
∫

y 2 dA → less deflection



Another beam-design criterion is maximum bending stress: the
fibers farthest from the neutral surface experience the largest
tension or compression, hence largest bending stress.

When we section the beam at x , bending moment M(x) is

M =
EI

R

which we can solve for the radius of curvature R = EI/M. Then
the stress a distance y above the neutral surface is

f = Ee = E
y

R
=

E y

(EI/M)
=

M y

I



The bending stress a distance y above the neutral surface is

f =
M y

I

The largest bending stress happens in the fibers farthest above or
below the neutral surface. Call this largest distance ymax ≡ c .

fmax =
M c

I
=

M

(I/c)
=

M

S

The ratio S = I/c is called “section modulus.”



Bending stress in fibers farthest from neutral surface:

fmax =
M

(I/c)
=

M

S

So you sketch your load, V , and M diagrams, and you find Mmax,
i.e. the largest magnitude of M(x).

Then, the material you are using for beams (wood, steel, etc.) has
a maximum allowable bending stress, Fb.

So then you look in your table of beam cross-sections and choose

S ≥ Srequired =
Mmax

Fb



Beam criteria:

I Normal stress in the extreme fibers of the beam (farthest from
neutral surface) must be smaller than the allowable bending
stress, Fb, which depends on the material (wood, steel, etc.).

I This happens where M(x) has largest magnitude.

I Shear stress (in both y (“transverse”) and x (“longitudinal”)
must be smaller than the allowable shear stress, Fv , which is
also a property of the material (wood, steel, etc.).

I This happens where V (x) has largest magnitude, and
(surprisingly) is largest near the neutral surface.

I The above two are “strength” criteria. The third one is a
“stiffness” criterion:

I The maximum deflection under load must satisfy the building
code: typically ∆ymax < L/360.

I For a uniform load, this happens farthest away from the
supports. If deflection is too large, plaster ceilings develop
cracks, floors feel uncomfortably bouncy or sloped.

I The book also notes longitudinal buckling as a failure mode.



Maximum deflection is one of several beam-design criteria. ∆max

comes from integrating M(x)/(EI ) twice w.r.t. x to get ∆(x).

For uniform load w on simply-supported beam, you get

∆max =
5wL4

384EI

You just look these results up, or use a computer to calculate
them. But I had great fun calculating the 5/384 myself!

Deflection is proportional to load, and inversely proportional to
Young’s modulus and to the second moment of area.

I More load → more deflection

I Stiffer material → less deflection

I Cross-section with larger I =
∫

y 2 dA → less deflection

Notice that putting a column in the middle of a long, uniformly
loaded beam reduces ∆max by a factor of 24 = 16. Alternatively,
if you want to span a large, open space without intermediate
columns or bearing walls, you need beams with large I .



Bending beam into circular arc of radius R gives e =
∆L

L0
=

y

R
,

strain e vs. distance y above the neutral surface.

Hooke’s Law f = Ee

gives stress f =
E y

R
Torque exerted by
fibers of beam is

M =

∫
y (f dA) =

y
E y

R
dA =

E

R
y 2 dA

M =
EI

R

Eliminate R ⇒

f =
M y

I
=

M

I/y



The bending stress a distance y above the neutral surface is

f =
M y

I

The largest bending stress happens in the fibers farthest above or
below the neutral surface. Call this largest distance ymax ≡ c .

fmax =
Mmax c

I
=

Mmax

(I/c)
=

Mmax

S

The ratio S = I/c is called “section modulus.” The load diagram
gives you Mmax. Each material (wood, steel, etc.) has allowed
bending stress fmax. Then Smin tells you how big a beam you need.



Example (using metric units!): A cantilever beam has a span of
3.0 m with a single concentrated load of 100 kg at its unsupported
end. If the beam is made of timber having allowable bending stress
Fb = 1.1× 107 N/m2 (was 1600 psi in US units), what minimum
section modulus is required?

What is the smallest “2×” dimensional lumber (width = 1.5 inch
= 0.038 m) whose cross-section satisfies this strength criterion?

Would this beam also satisfy a ∆max < L/240 (maximum
deflection) stiffness criterion? If not, what standard “2×”
cross-section is needed instead?

∆max = PL3/(3EI ) for a cantilever with concentrated load at end.
Use Young’s modulus E = 1.1× 1010 N/m2 for southern pine.





Smin =
|Mmax|
fallowed

=
PL

Fb
=

(980N)(3m)

1.1× 107 N/m2
= 26.7× 10−5 m3

∆allowed =
L

240
=

3.0m

240
= 0.0125 m

∆max =
PL3

3EI
⇒ Imin =

PL3

3E ∆allowed
= 64.2× 10−6 m4



I worked out b, h, I , and S = I/c values in metric units for
standard “2×” dimensional lumber.

b b h h I = bh3/12 S = bh2/6
2× 4 1.5 in .038m 3.5 in .089m 2.23× 10−6 m4 5.02× 10−5 m3

2× 6 1.5 in .038m 5.5 in .140m 8.66× 10−6 m4 12.4× 10−5 m3

2× 8 1.5 in .038m 7.5 in .191m 21.9× 10−6 m4 23.0× 10−5 m3

2× 10 1.5 in .038m 9.5 in .241m 44.6× 10−6 m4 37.0× 10−5 m3

2× 12 1.5 in .038m 11.5 in .292m 79.1× 10−6 m4 54.2× 10−5 m3

The numbers are nicer if you use centimeters instead of meters,
but then you have the added hassle of remembering to convert
back to meters in calculations.

b b h h I = bh3/12 S = bh2/6
2× 4 1.5 in 3.8 cm 3.5 in 8.9 cm 223 cm4 50.2 cm3

2× 6 1.5 in 3.8 cm 5.5 in 14.0 cm 866 cm4 124 cm3

2× 8 1.5 in 3.8 cm 7.5 in 19.1 cm 2195 cm4 230 cm3

2× 10 1.5 in 3.8 cm 9.5 in 24.1 cm 4461 cm4 370 cm3

2× 12 1.5 in 3.8 cm 11.5 in 29.2 cm 7913 cm4 542 cm3



Minor variation on same problem: A cantilever beam has a span of
3.0 m with a uniform distributed load of 33.3 kg/m along its entire
length. If we use timber with allowable bending stress
Fb = 1.1× 107 N/m2, what minimum section modulus is required?

What is the smallest “2×” dimensional lumber (width = 1.5 inch
= 0.038 m) whose cross-section satisfies this strength criterion?

Would this beam also satisfy a ∆max < L/240 (maximum
deflection) stiffness criterion? If not, what standard “2×”
cross-section is needed instead?

∆max = wL4/(8EI ) for a cantilever with uniform load. Use
Young’s modulus E = 1.1× 1010 N/m2 for southern pine.





Smin =
|Mmax|
fallowed

=
wL2/2

Fb
=

(326N/m)(3m)2/2

1.1× 107 N/m2
= 13.3× 10−5 m3

∆allowed =
L

240
=

3.0m

240
= 0.0125 m

∆max =
wL4

8EI
⇒ Imin =

wL4

8E ∆allowed
= 24.0× 10−6 m4



(Here’s a homework problem from ARCH 435.)

Actually, Home Depot’s 2× 10 really is 9.5 inches deep, not 9.25
inches, and 2× 12 really is 11.5 inches deep.



A timber floor system uses joists made of “2× 10” dimensional
lumber. Each joist spans a length of 4.27 m (simply supported).
The floor carries a load of 2400 N/m2. At what spacing should the
joists be placed, in order not to exceed allowable bending stress
Fb = 10000 kN/m2 (1.0× 107 N/m2)?

(We should get an answer around 24 inches = 0.61 meters.)









If we have time left, let’s solve this truss problem together. It’s
actually pretty quick, using method of sections. First solve for
vertical support force at A, then analyze left side of section.





Physics 8 — Wednesday, November 20, 2019

I HW11 is “due” on Friday, but you can turn it in on Monday,
Nov 25, as it will probably take us an extra day to get through
the material on beams.

I HW help: (Bill) Wed 4-6:30pm DRL 3C4, (Brooke/Grace)
Thu 6-8pm DRL 2C4.

I This week, read/skim O/K Ch8 (more about beams).

I You may find my “equation sheet” to be a helpful summary of
the key results from the Onouye/Kane reading:

http://positron.hep.upenn.edu/p8/files/equations.pdf#page=12

http://positron.hep.upenn.edu/p8/files/equations.pdf#page=12


Physics 8 — Friday, November 22, 2019

I Turn in HW11 either today or Monday, as you prefer.

I I just added to my “equation sheet” the math behind the
shear-stress results Prof. Farley illustrated for us on Wednesday:

http://positron.hep.upenn.edu/p8/files/equations.pdf#page=22

I Today and Monday are our last two days on beams. Then we’ll
spend a week on oscillation / vibration / periodic motion.

I I hope to hand out the take-home practice exam (due Dec 6) on
Monday (Nov 25), but if I don’t get it done in time, I will put the
PDF online before Thanksgiving. I intend for it to be comparable in
length and coverage to the in-class final exam (Dec 12, noon, A1).

I I plan to do a review session on Dec 11, time/place TBD.

I Prof. Farley will join us Monday via FaceTime. He’d like us to send
him in advance questions you’d like him to answer.

I Next Wednesday, you don’t have to show up, but if you do, you’ll
get a bonus point. I will spend the hour introducing “Python Mode
for Processing” (py.processing.org) — a visual-arts-oriented
approach to writing code to do drawing and animation.

http://positron.hep.upenn.edu/p8/files/equations.pdf#page=22


Shear (V) and moment (M) diagrams:

I First draw a “load diagram,” which is an EFBD that shows all
of the vertical forces acting on the beam.

I The “shear diagram” V (x) graphs the running sum of all
vertical forces (both supports and loads) acting on the beam,
from the left side up to x , where upward = positive,
downward = negative.

I To draw the “moment diagram” M(x), note that V is the
slope of M:

V (x) =
d

dx
M(x)

I The change in M from x1 to x2 is given by

M2 −M1 = (x2 − x1) V average
1→2

I If an end of a beam is unsupported (“free”), is hinge/pin
supported, or is roller supported, then M = 0 at that end.
You can only have M 6= 0 at an end if the support at that end
is capable of exerting a torque on the beam — for example,
the fixed end of a cantilever has M 6= 0.



On Wednesday, we drew V (x) and M(x) diagrams for this simply
supported beam with uniform distributed load:









Notice (on next slide):

I For most load/support conditions, bending moment M(x)
varies with x , and bending stress is proportional to bending
moment.

I The shear stress (exerted between parallel fibers) along the
bottom edge of the red rectangle must make up the difference
between the left and right total bending forces.

I The left and right total bending forces depend on how much
area we add up in drawing the red rectangle.

I The total reaches a maximum at the neutral surface, then
decreases, since the direction of the bending stress reverses at
the neutral surface.





If you find this confusing:
(a) You don’t really need to know it for this course. If you’re an
architect, you’ll learn it again when you study structures.
(b) You might look at the explanation I wrote up in the
Onouye/Kane chapter 8 pages of
http://positron.hep.upenn.edu/p8/files/equations.pdf#page=22

http://positron.hep.upenn.edu/p8/files/equations.pdf#page=22


(Let’s skip ahead to slide 17.)

Draw shear (V ) and moment (M) diagrams for this beam! Tricky!
First one needs to solve for the support (“reaction”) forces.

Note: in solving for the support forces, you replace distributed load
w with equivalent point load. But when you draw the load
diagram to find V and M, you need to keep w in its original form.



Remember that V (x) is the running sum, from LHS to x , of
vertical forces acting on the beam, with upward=positive.





Neat trick: M2 −M1 = (V average
1→2 )(x2 − x1)



Draw load, V , and M diagrams for this simply supported beam
with a partial uniform load.









Why do we care about these beam diagrams, anyway? Usually the
floor of a structure must carry a specified weight per unit area.
The beams (beams, girders, joists, etc.) must be strong enough to
support this load without failing and must be stiff enough to
support this load without excessive deflection.



Beam criteria:

I Normal stress in the extreme fibers of the beam (farthest from
neutral surface) must be smaller than the allowable bending
stress, Fb, which depends on the material (wood, steel, etc.).

I This happens where M(x) has largest magnitude.

I Shear stress (in both y (“transverse”) and x (“longitudinal”)
must be smaller than the allowable shear stress, Fv , which is
also a property of the material (wood, steel, etc.).

I This happens where V (x) has largest magnitude, and
(surprisingly) is largest near the neutral surface.

I The above two are “strength” criteria. The third one is a
“stiffness” criterion:

I The maximum deflection under load must satisfy the building
code: typically ∆ymax < L/360.

I For a uniform load, this happens farthest away from the
supports. If deflection is too large, plaster ceilings develop
cracks, floors feel uncomfortably bouncy or sloped.

I The book also notes buckling as a beam failure mode.



(In this illustration, bottom is in tension, top is in compression, as
in a “simply supported” beam.)



A big topic from this week’s reading was to see how an initially
horizontal beam responds to the bending moment M(x) by
deforming into a curved shape.

(In this illustration, top is in tension, as in a cantilever.)



Key idea: bending moment M ∝ 1
R , where R is the radius of

curvature of the beam. For constant M, vertical lines converge
toward common center of curvature.

strain =
∆L

L0
=

y

R

where y = 0 is the
neutral surface.

So in this case y > 0 is
in tension and y < 0 is
in compression.



If you think of wood fibers running along the beam’s axis, then the
fibers above the neutral surface (y > 0) are stretched in proportion
to y , and the fibers below the neutral surface (y < 0) are
compressed in proportion to |y |.

strain =
∆L

L
=

y

R



Now remember that ∆L
L is called (axial) strain, and force per unit

area is called stress. For an elastic material, strain (e) ∝ stress (f ).

∆L

L
=

1

E
× Force

Area
=

1

E
× f e =

1

E
× f



In the elastic region, strain (e = ∆L/L) is proportional to stress

(f = F/A). f = Ee . The slope E is Young’s modulus.



(Now skip ahead to slide 31.)
Plugging in f = Ee to the bending-beam diagram:

y

R
=

∆L

L
= e =

f

E

we find the force-per-unit area (stress) exerted by the fibers is

f =
Ey

R



The force-per-unit area (stress) exerted by the fibers is

f =
Ey

R

while the torque (bending moment dM, pivot about N.A.) exerted
by each tiny fiber of area dA is proportional to its lever arm y

dM = y dF = y f dA = y

(
Ey

R

)
dA =

E

R
y 2 dA



So the bending moment M exerted by a curved beam is

M =
E

R

∫
y 2 dA =

EI

R

where R is the curved beam’s radius of curvature and I =
∫

y 2 dA
is the “second moment of area” a.k.a. “area moment of inertia.”



M =
E

R

∫
y 2dA =

EI

R

Meanwhile, the vertical deflection ∆ of a point along the beam is
related to its curvature by (in limit where ∆� R)

1

R
≈ d2∆

dx2

so you can integrate the M(x) curve twice to get deflection

d2∆

dx2
=

M

EI
⇒ ∆(x) =

1

EI

∫
dx

∫
M(x) dx



Calculus digression (not important — but you may be curious):

You may have seen in calculus that the “curvature” (which means
1/R, where R is the radius of curvature) of a function y = f (x) is

1

R
=

y ′′

(1 + (y ′)2)3/2

We are working in the limit y ′ � 1, so

1

R
≈ y ′′

That’s how we arrived at

1

R
≈ d2∆

dx2



M =
E

R

∫
y 2dA =

EI

R

Meanwhile, the vertical deflection ∆ of a point along the beam is
related to its curvature by (in limit where ∆� R)

1

R
≈ d2∆

dx2

so you can integrate the M(x) curve twice to get deflection

d2∆

dx2
=

M

EI
⇒ ∆(x) =

1

EI

∫
dx

∫
M(x) dx



This Onouye/Kane figure
writes “y” here for
deflection, but I wrote
“∆” for deflection on the
preceding pages (and they
usually do, too), because
we were already using y
for “distance above the
neutral surface.”

So you integrate M(x)/EI
twice w.r.t. x to get the
deflection ∆(x).

The bending moment
M(x) = EI d2∆/dx2,
where E is Young’s
modulus and I is second
moment of area.



The most common deflection results can be found in tables.

(After this, skip ahead to slide 36.)



FYI, here’s where that crazy (5wL4)/(384EI ) comes from!

(continued on next page)



Here’s where that crazy (5wL4)/(384EI ) comes from!

The 2 integration constants can be tricky. Simply supported:
∆(0) = ∆(L) = 0. (For cantilever, ∆(0) = ∆′(0) = 0 instead.)



Maximum deflection is one of several beam-design criteria. You
can see now how it relates to the load and M(x) diagrams: ∆max

comes from integrating M(x)/(EI ) twice w.r.t. x to get ∆(x).

For point load P at the end of a cantilever (for example), you get

∆max =
PL3

3EI

For uniform load w on simply-supported beam, you get

∆max =
5wL4

384EI

You just look these results up, or use a computer to calculate them.

Deflection is proportional to load, and inversely proportional to
Young’s modulus and to the second moment of area.

I More load → more deflection

I Stiffer material → less deflection

I Cross-section with larger I =
∫

y 2 dA → less deflection



Another beam-design criterion is maximum bending stress: the
fibers farthest from the neutral surface experience the largest
tension or compression, hence largest bending stress.

When we section the beam at x , bending moment M(x) is

M =
EI

R

which we can solve for the radius of curvature R = EI/M. Then
the stress a distance y above the neutral surface is

f = Ee = E
y

R
=

E y

(EI/M)
=

M y

I



The bending stress a distance y above the neutral surface is

f =
M y

I

The largest bending stress happens in the fibers farthest above or
below the neutral surface. Call this largest distance ymax ≡ c .

fmax =
M c

I
=

M

(I/c)
=

M

S

The ratio S = I/c is called “section modulus.”



Bending stress in fibers farthest from neutral surface:

fmax =
M

(I/c)
=

M

S

So you sketch your load, V , and M diagrams, and you find Mmax,
i.e. the largest magnitude of M(x).

Then, the material you are using for beams (wood, steel, etc.) has
a maximum allowable bending stress, Fb.

So then you look in your table of beam cross-sections and choose

S ≥ Srequired =
Mmax

Fb



Beam criteria:

I Normal stress in the extreme fibers of the beam (farthest from
neutral surface) must be smaller than the allowable bending
stress, Fb, which depends on the material (wood, steel, etc.).

I This happens where M(x) has largest magnitude.

I Shear stress (in both y (“transverse”) and x (“longitudinal”)
must be smaller than the allowable shear stress, Fv , which is
also a property of the material (wood, steel, etc.).

I This happens where V (x) has largest magnitude, and
(surprisingly) is largest near the neutral surface.

I The above two are “strength” criteria. The third one is a
“stiffness” criterion:

I The maximum deflection under load must satisfy the building
code: typically ∆ymax < L/360.

I For a uniform load, this happens farthest away from the
supports. If deflection is too large, plaster ceilings develop
cracks, floors feel uncomfortably bouncy or sloped.

I The book also notes buckling as a beam failure mode.



Maximum deflection is one of several beam-design criteria. ∆max

comes from integrating M(x)/(EI ) twice w.r.t. x to get ∆(x).

For uniform load w on simply-supported beam, you get

∆max =
5wL4

384EI

You just look these results up, or use a computer to calculate
them. But I had great fun calculating the 5/384 myself!

Deflection is proportional to load, and inversely proportional to
Young’s modulus and to the second moment of area.

I More load → more deflection

I Stiffer material → less deflection

I Cross-section with larger I =
∫

y 2 dA → less deflection

Notice that putting a column in the middle of a long, uniformly
loaded beam reduces ∆max by a factor of 24 = 16. Alternatively,
if you want to span a large, open space without intermediate
columns or bearing walls, you need beams with large I .



Bending beam into circular arc of radius R gives e =
∆L

L0
=

y

R
,

strain e vs. distance y above the neutral surface.

Hooke’s Law f = Ee

gives stress f =
E y

R
Torque exerted by
fibers of beam is

M =

∫
y (f dA) =

y
E y

R
dA =

E

R
y 2 dA

M =
EI

R

Eliminate R ⇒

f =
M y

I
=

M

I/y



The bending stress a distance y above the neutral surface is

f =
M y

I

The largest bending stress happens in the fibers farthest above or
below the neutral surface. Call this largest distance ymax ≡ c .

fmax =
Mmax c

I
=

Mmax

(I/c)
=

Mmax

S

The ratio S = I/c is called “section modulus.” The load diagram
gives you Mmax. Each material (wood, steel, etc.) has allowed
bending stress fmax. Then Smin tells you how big a beam you need.



Example (using metric units!): A cantilever beam has a span of
3.0 m with a single concentrated load of 100 kg at its unsupported
end. If the beam is made of timber having allowable bending stress
Fb = 1.1× 107 N/m2 (was 1600 psi in US units), what minimum
section modulus is required?

What is the smallest “2×” dimensional lumber (width = 1.5 inch
= 0.038 m) whose cross-section satisfies this strength criterion?

Would this beam also satisfy a ∆max < L/240 (maximum
deflection) stiffness criterion? If not, what standard “2×”
cross-section is needed instead?

∆max = PL3/(3EI ) for a cantilever with concentrated load at end.
Use Young’s modulus E = 1.1× 1010 N/m2 for southern pine.





Smin =
|Mmax|
fallowed

=
PL

Fb
=

(980N)(3m)

1.1× 107 N/m2
= 26.7× 10−5 m3

∆allowed =
L

240
=

3.0m

240
= 0.0125 m

∆max =
PL3

3EI
⇒ Imin =

PL3

3E ∆allowed
= 64.2× 10−6 m4



I worked out b, h, I , and S = I/c values in metric units for
standard “2×” dimensional lumber.

b b h h I = bh3/12 S = bh2/6
2× 4 1.5 in .038m 3.5 in .089m 2.23× 10−6 m4 5.02× 10−5 m3

2× 6 1.5 in .038m 5.5 in .140m 8.66× 10−6 m4 12.4× 10−5 m3

2× 8 1.5 in .038m 7.5 in .191m 21.9× 10−6 m4 23.0× 10−5 m3

2× 10 1.5 in .038m 9.5 in .241m 44.6× 10−6 m4 37.0× 10−5 m3

2× 12 1.5 in .038m 11.5 in .292m 79.1× 10−6 m4 54.2× 10−5 m3

The numbers are nicer if you use centimeters instead of meters,
but then you have the added hassle of remembering to convert
back to meters in calculations.

b b h h I = bh3/12 S = bh2/6
2× 4 1.5 in 3.8 cm 3.5 in 8.9 cm 223 cm4 50.2 cm3

2× 6 1.5 in 3.8 cm 5.5 in 14.0 cm 866 cm4 124 cm3

2× 8 1.5 in 3.8 cm 7.5 in 19.1 cm 2195 cm4 230 cm3

2× 10 1.5 in 3.8 cm 9.5 in 24.1 cm 4461 cm4 370 cm3

2× 12 1.5 in 3.8 cm 11.5 in 29.2 cm 7913 cm4 542 cm3



Minor variation on same problem: A cantilever beam has a span of
3.0 m with a uniform distributed load of 33.3 kg/m along its entire
length. If we use timber with allowable bending stress
Fb = 1.1× 107 N/m2, what minimum section modulus is required?

What is the smallest “2×” dimensional lumber (width = 1.5 inch
= 0.038 m) whose cross-section satisfies this strength criterion?

Would this beam also satisfy a ∆max < L/240 (maximum
deflection) stiffness criterion? If not, what standard “2×”
cross-section is needed instead?

∆max = wL4/(8EI ) for a cantilever with uniform load. Use
Young’s modulus E = 1.1× 1010 N/m2 for southern pine.





Smin =
|Mmax|
fallowed

=
wL2/2

Fb
=

(326N/m)(3m)2/2

1.1× 107 N/m2
= 13.3× 10−5 m3

∆allowed =
L

240
=

3.0m

240
= 0.0125 m

∆max =
wL4

8EI
⇒ Imin =

wL4

8E ∆allowed
= 24.0× 10−6 m4



(Here’s a homework problem from ARCH 435.)

Actually, Home Depot’s 2× 10 really is 9.5 inches deep, not 9.25
inches, and 2× 12 really is 11.5 inches deep.



A timber floor system uses joists made of “2× 10” dimensional
lumber. Each joist spans a length of 4.27 m (simply supported).
The floor carries a load of 2400 N/m2. At what spacing should the
joists be placed, in order not to exceed allowable bending stress
Fb = 10000 kN/m2 (1.0× 107 N/m2)?

(We should get an answer around 24 inches = 0.61 meters.)









If we have time left, let’s solve this truss problem together. It’s
actually pretty quick, using method of sections. First solve for
vertical support force at A, then analyze left side of section.





Physics 8 — Friday, November 22, 2019

I Turn in HW11 either today or Monday, as you prefer.

I I just added to my “equation sheet” the math behind the
shear-stress results Prof. Farley illustrated for us on Wednesday:

http://positron.hep.upenn.edu/p8/files/equations.pdf#page=22

I Today and Monday are our last two days on beams. Then we’ll
spend a week on oscillation / vibration / periodic motion.

I I hope to hand out the take-home practice exam (due Dec 6) on
Monday (Nov 25), but if I don’t get it done in time, I will put the
PDF online before Thanksgiving. I intend for it to be comparable in
length and coverage to the in-class final exam (Dec 12, noon, A1).

I I plan to do a review session on Dec 11, time/place TBD.

I Prof. Farley will join us Monday via FaceTime. He’d like us to send
him in advance questions you’d like him to answer.

I Next Wednesday, you don’t have to show up, but if you do, you’ll
get a bonus point. I will spend the hour introducing “Python Mode
for Processing” (py.processing.org) — a visual-arts-oriented
approach to writing code to do drawing and animation.

http://positron.hep.upenn.edu/p8/files/equations.pdf#page=22


Physics 8 — Monday, November 25, 2019

I Turn in HW11.

I Today is our last day on beams. Then we’ll spend a week on
oscillation / vibration / periodic motion.

I I’ll put the PDF of the take-home practice exam online before
Thanksgiving. I intend for it to be similar in coverage to the in-class
final exam (Dec 12, noon, A1), though the in-class exam will be
shorter than the take-home. If you turn it in on Friday, Dec 6, then
I will email it back to you after class on Monday, Dec 9. If you turn
it in on Monday, Dec 9, then I will give it back to you at the
Wednesday (Dec 11) review session.

I I plan to do a review session on Dec 11, time/place TBD.

I Prof. Farley plans to join us today. Stop me before it gets too late!

I Wednesday, you don’t have to show up, but if you do, you’ll get a
bonus point. I will spend the hour introducing “Python Mode for
Processing” (py.processing.org) — a visual-arts-oriented
approach to writing code to do drawing and animation. Last time
we coded a simplified “breakout” video game. This year we may
code a highly simplified “asteroids” video game, if all goes well.







By similar triangles, ∆L
y = L0

R ⇒ strain e = ∆L
L0

= y
R

Hooke’s law: f = eE ⇒ f = Ey
R (1)

f = stress = force per unit area. E = Young’s modulus.



Imagine a fiber running along the length of the bent beam. Let the
fiber have cross-section area dA and height y above the neutral
surface. The tension (force) in the fiber is

dF = f dA =
E

R
y dA

Pivoting about the neutral axis, the moment (torque) exerted by
this fiber is (since y is the lever arm from the pivot)

dM = y dF =
E

R
y 2 dA

To find the total bending moment exerted by this cross-section of
beam, we add up all of the fibers over the entire cross-section:

M =
E

R

∫
y 2 dA =

EI

R
where I =

∫
y 2 dA (2)

◦ One factor of y comes from strain ∆L/L0 ∝ y .
◦ The second factor of y is lever arm above the N.A.



So the beam’s radius of curvature is R = EI
M (3) (illustrate).

Combine (1) + (3) ⇒ bending stress f = Ey
EI/M =

My

I
= f

The maximum bending stress is

fmax =
|M|max|y |max

I
=
|M|max

S
= fmax

where S is the “section modulus” S =
I

|y |max

◦ know load & span → find |M|max

◦ know type of material → allowable fmax

Srequired ≥
|M|max

fallowable

tells you how “big” a beam cross-section you need for this load,
span, & material, to meet the maximum-bending-stress criterion,
which is a “strength” criterion (not a “stiffness” criterion).



In calculus, 1
R quantifies the “curvature” of a function Y (x)

curvature =
1

R
=

Y ′′(x)

[1 + Y ′(x)2]3/2
≈ Y ′′(x)

The curvature of a function is closely related to its second
derivative Y ′′(x). If the slope |Y ′(x)| � 1, as is true for beams
used in structures, then 1

R = Y ′′(x).

For clarity, I’ll write Y (x) for the shape of the deflected beam, and
reserve y to denote height above the neutral surface.

Y ′′(x) =
1

R
=

M(x)

EI

slope Y ′(x) =
1

EI

∫
M(x) dx

Y (x) =
1

EI

∫
dx

∫
M(x) dx

deflection under load ∆(x) = −Y (x). This is where you get

∆max = 5wL4

384EI for simply-supported beam with uniform load w , etc.



This Onouye/Kane figure
writes “y” here for
deflection, but I wrote
“Y ” for deflected beam
shape, because we were
already using y for
“distance above the
neutral surface.”

So you integrate M(x)/EI
twice w.r.t. x to get the
deflected beam shape
Y (x).

The bending moment
M(x) = EI d2Y /dx2,
where E is Young’s
modulus and I is second
moment of area.



The most common deflection results can be found in tables.



FYI, here’s where that crazy (5wL4)/(384EI ) comes from!

(continued on next page)



Here’s where that crazy (5wL4)/(384EI ) comes from!

The 2 integration constants can be tricky. Simply supported:
∆(0) = ∆(L) = 0. (For cantilever, ∆(0) = ∆′(0) = 0 instead.)



Maximum deflection is one of several beam-design criteria. ∆max

comes from integrating M(x)/(EI ) twice w.r.t. x to get ∆(x).

For uniform load w on simply-supported beam, you get

∆max =
5wL4

384EI

You just look these results up, or use a computer to calculate
them. But I had great fun calculating the 5/384 myself!

Deflection is proportional to load, and inversely proportional to
Young’s modulus and to the second moment of area.

I More load → more deflection

I Stiffer material → less deflection

I Cross-section with larger I =
∫

y 2 dA → less deflection

Notice that putting a column in the middle of a long, uniformly
loaded beam reduces ∆max by a factor of 24 = 16. Alternatively,
if you want to span a large, open space without intermediate
columns or bearing walls, you need beams with large I .



Beam criteria:

I Normal stress in the extreme fibers of the beam (farthest from
neutral surface) must be smaller than the allowable bending
stress, Fb, which depends on the material (wood, steel, etc.).

I This happens where M(x) has largest magnitude.

I Shear stress (in both y (“transverse”) and x (“longitudinal”)
must be smaller than the allowable shear stress, Fv , which is
also a property of the material (wood, steel, etc.).

I This happens where V (x) has largest magnitude, and
(surprisingly) is largest near the neutral surface.

I The above two are “strength” criteria. The third one is a
“stiffness” criterion:

I The maximum deflection under load must satisfy the building
code: typically ∆ymax < L/360.

I For a uniform load, this happens farthest away from the
supports. If deflection is too large, plaster ceilings develop
cracks, floors feel uncomfortably bouncy or sloped.

I The book also notes buckling as a beam failure mode.





Key idea: bending moment M ∝ 1
R , where R is the radius of

curvature of the beam. For constant M, vertical lines converge
toward common center of curvature.

strain =
∆L

L0
=

y

R

where y = 0 is the
neutral surface.

So in this case y > 0 is
in tension and y < 0 is
in compression.



M =
E

R

∫
y 2dA =

EI

R

Meanwhile, the vertical deflection ∆ of a point along the beam is
related to its curvature by (in limit where ∆� R)

1

R
≈ −d2∆

dx2

so you can integrate the M(x) curve twice to get deflection

d2∆

dx2
= −M

EI
⇒ ∆(x) = − 1

EI

∫
dx

∫
M(x) dx



Another beam-design criterion is maximum bending stress: the
fibers farthest from the neutral surface experience the largest
tension or compression, hence largest bending stress.

When we section the beam at x , bending moment M(x) is

M =
EI

R

which we can solve for the radius of curvature R = EI/M. Then
the stress a distance y above the neutral surface is

f = Ee = E
y

R
=

E y

(EI/M)
=

M y

I



The bending stress a distance y above the neutral surface is

f =
M y

I

The largest bending stress happens in the fibers farthest above or
below the neutral surface. Call this largest distance ymax ≡ c .

fmax =
M c

I
=

M

(I/c)
=

M

S

The ratio S = I/c is called “section modulus.”



Bending stress in fibers farthest from neutral surface:

fmax =
M

(I/c)
=

M

S

So you sketch your load, V , and M diagrams, and you find Mmax,
i.e. the largest magnitude of M(x).

Then, the material you are using for beams (wood, steel, etc.) has
a maximum allowable bending stress, Fb.

So then you look in your table of beam cross-sections and choose

S ≥ Srequired =
Mmax

Fb



Maximum deflection is one of several beam-design criteria. ∆max

comes from integrating M(x)/(EI ) twice w.r.t. x to get ∆(x).

For uniform load w on simply-supported beam, you get

∆max =
5wL4

384EI

You just look these results up, or use a computer to calculate
them. But I had great fun calculating the 5/384 myself!

Deflection is proportional to load, and inversely proportional to
Young’s modulus and to the second moment of area.

I More load → more deflection

I Stiffer material → less deflection

I Cross-section with larger I =
∫

y 2 dA → less deflection

Notice that putting a column in the middle of a long, uniformly
loaded beam reduces ∆max by a factor of 24 = 16. Alternatively,
if you want to span a large, open space without intermediate
columns or bearing walls, you need beams with large I .



Bending beam into circular arc of radius R gives e =
∆L

L0
=

y

R
,

strain e vs. distance y above the neutral surface.

Hooke’s Law f = Ee

gives stress f =
E y

R
Torque exerted by
fibers of beam is

M =

∫
y (f dA) =

y
E y

R
dA =

E

R
y 2 dA

M =
EI

R

Eliminate R ⇒

f =
M y

I
=

M

I/y



The bending stress a distance y above the neutral surface is

f =
M y

I

The largest bending stress happens in the fibers farthest above or
below the neutral surface. Call this largest distance ymax ≡ c .

fmax =
Mmax c

I
=

Mmax

(I/c)
=

Mmax

S

The ratio S = I/c is called “section modulus.” The load diagram
gives you Mmax. Each material (wood, steel, etc.) has allowed
bending stress fmax. Then Smin tells you how big a beam you need.



(The next few slides contain beam-design examples. Let’s skip
ahead to slide 1038)

Example (using metric units!): A cantilever beam has a span of
3.0 m with a single concentrated load of 100 kg at its unsupported
end. If the beam is made of timber having allowable bending stress
Fb = 1.1× 107 N/m2 (was 1600 psi in US units), what minimum
section modulus is required?

What is the smallest “2×” dimensional lumber (width = 1.5 inch
= 0.038 m) whose cross-section satisfies this strength criterion?

Would this beam also satisfy a ∆max < L/240 (maximum
deflection) stiffness criterion? If not, what standard “2×”
cross-section is needed instead?

∆max = PL3/(3EI ) for a cantilever with concentrated load at end.
Use Young’s modulus E = 1.1× 1010 N/m2 for southern pine.





Smin =
|Mmax|
fallowed

=
PL

Fb
=

(980N)(3m)

1.1× 107 N/m2
= 26.7× 10−5 m3

∆allowed =
L

240
=

3.0m

240
= 0.0125 m

∆max =
PL3

3EI
⇒ Imin =

PL3

3E ∆allowed
= 64.2× 10−6 m4



I worked out b, h, I , and S = I/c values in metric units for
standard “2×” dimensional lumber.

b b h h I = bh3/12 S = bh2/6
2× 4 1.5 in .038m 3.5 in .089m 2.23× 10−6 m4 5.02× 10−5 m3

2× 6 1.5 in .038m 5.5 in .140m 8.66× 10−6 m4 12.4× 10−5 m3

2× 8 1.5 in .038m 7.5 in .191m 21.9× 10−6 m4 23.0× 10−5 m3

2× 10 1.5 in .038m 9.5 in .241m 44.6× 10−6 m4 37.0× 10−5 m3

2× 12 1.5 in .038m 11.5 in .292m 79.1× 10−6 m4 54.2× 10−5 m3

The numbers are nicer if you use centimeters instead of meters,
but then you have the added hassle of remembering to convert
back to meters in calculations.

b b h h I = bh3/12 S = bh2/6
2× 4 1.5 in 3.8 cm 3.5 in 8.9 cm 223 cm4 50.2 cm3

2× 6 1.5 in 3.8 cm 5.5 in 14.0 cm 866 cm4 124 cm3

2× 8 1.5 in 3.8 cm 7.5 in 19.1 cm 2195 cm4 230 cm3

2× 10 1.5 in 3.8 cm 9.5 in 24.1 cm 4461 cm4 370 cm3

2× 12 1.5 in 3.8 cm 11.5 in 29.2 cm 7913 cm4 542 cm3



Minor variation on same problem: A cantilever beam has a span of
3.0 m with a uniform distributed load of 33.3 kg/m along its entire
length. If we use timber with allowable bending stress
Fb = 1.1× 107 N/m2, what minimum section modulus is required?

What is the smallest “2×” dimensional lumber (width = 1.5 inch
= 0.038 m) whose cross-section satisfies this strength criterion?

Would this beam also satisfy a ∆max < L/240 (maximum
deflection) stiffness criterion? If not, what standard “2×”
cross-section is needed instead?

∆max = wL4/(8EI ) for a cantilever with uniform load. Use
Young’s modulus E = 1.1× 1010 N/m2 for southern pine.





Smin =
|Mmax|
fallowed

=
wL2/2

Fb
=

(326N/m)(3m)2/2

1.1× 107 N/m2
= 13.3× 10−5 m3

∆allowed =
L

240
=

3.0m

240
= 0.0125 m

∆max =
wL4

8EI
⇒ Imin =

wL4

8E ∆allowed
= 24.0× 10−6 m4



(Here’s a homework problem from ARCH 435.)

Actually, Home Depot’s 2× 10 really is 9.5 inches deep, not 9.25
inches, and 2× 12 really is 11.5 inches deep.



A timber floor system uses joists made of “2× 10” dimensional
lumber. Each joist spans a length of 4.27 m (simply supported).
The floor carries a load of 2400 N/m2. At what spacing should the
joists be placed, in order not to exceed allowable bending stress
Fb = 10000 kN/m2 (1.0× 107 N/m2)?

(We should get an answer around 24 inches = 0.61 meters.)









Draw shear (V ) and moment (M) diagrams for this beam! Tricky!
First one needs to solve for the support (“reaction”) forces.

Note: in solving for the support forces, you replace distributed load
w with equivalent point load. But when you draw the load
diagram to find V and M, you need to keep w in its original form.



Remember that V (x) is the running sum, from LHS to x , of
vertical forces acting on the beam, with upward=positive.





Neat trick: M2 −M1 = (V average
1→2 )(x2 − x1)



Draw load, V , and M diagrams for this simply supported beam
with a partial uniform load.







If we have time left, let’s solve this truss problem together. It’s
actually pretty quick, using method of sections. First solve for
vertical support force at A, then analyze left side of section.





Physics 8 — Monday, November 25, 2019

I Turn in HW11.

I Today is our last day on beams. Then we’ll spend a week on
oscillation / vibration / periodic motion.

I I’ll put the PDF of the take-home practice exam online before
Thanksgiving. I intend for it to be similar in coverage to the in-class
final exam (Dec 12, noon, A1), though the in-class exam will be
shorter than the take-home. If you turn it in on Friday, Dec 6, then
I will email it back to you after class on Monday, Dec 9. If you turn
it in on Monday, Dec 9, then I will give it back to you at the
Wednesday (Dec 11) review session.

I I plan to do a review session on Dec 11, time/place TBD.

I Prof. Farley plans to join us today.

I Wednesday, you don’t have to show up, but if you do, you’ll get a
bonus point. I will spend the hour introducing “Python Mode for
Processing” (py.processing.org) — a visual-arts-oriented
approach to writing code to do drawing and animation.



Physics 8 — Wednesday, November 27, 2019
I I’ll put take-home practice exam (due 12/6 or 12/9) online

this evening. I put 4 years’ old exams online at
http://positron.hep.upenn.edu/p8/files/oldexams/

I Today: a tutorial of the “Processing.py” computer
programming language — whose purpose is to learn how to
code within the context of the visual arts. It makes coding fun
and visual. Processing.py is a Python-based version of the
(Java-based) Processing programming environment.

I Extra-credit options (if you’re interested):
I Learn to use Mathematica (ask me how), which is a system for

doing mathematics by computer. (It is the brains behind
Wolfram Alpha.) Penn’s site license makes Mathematica
free-of-charge for SAS and Wharton students.

I Use “Processing.py” (or ordinary “Processing”) to write a
program to draw or animate something that interests you.
(Not necessarily physics-related.)

I Knowing “how to code” is empowering & enlightening. So I
offer you an excuse to give it a try, for extra credit, if you wish.

I Today’s examples online at
http://positron.hep.upenn.edu/p8/files/pyprocessing/

http://positron.hep.upenn.edu/p8/files/oldexams/
http://positron.hep.upenn.edu/p8/files/pyprocessing/


The software is free & open-source. Runs on Mac, Windows,
Linux. The “getting started” book will set you back about $15.

or start with the in-browser video tutorial (no download needed):
http://hello.processing.org (Processing, not Processing.py)

http://hello.processing.org








“hello world” program
Let’s draw a circle and a line.



More commonly, a Processing program has a function called
setup() that runs once when the program starts, and another
function called draw() that runs once per frame.

def setup():

# this function runs once when the program starts up

size(900, 450) # sets width & height of window (in pixels)

def draw():

# this function runs once per frame of the animation

line(0, frameCount, width, height-frameCount)



Let’s make it do something repetitive

def setup():

# this function runs once when the program starts up

size(900, 450) # sets width & height of window (in pixels)

def draw():

# this function runs once per frame of the animation

dy = 0.5*height + 0.5*height*sin(0.01*frameCount)

line(0, dy, width, height-dy)



How about repeating something more exciting?

def setup():

# this function runs once when the program starts up

size(900, 450) # sets width & height of window (in pixels)

def draw():

# this function runs once per frame of the animation

dy = 0.5*height + 0.5*height*sin(0.01*frameCount)

line(0, dy, width, height-dy)

t = 0.02*frameCount

x = 0.5*width + 200*cos(t)

y = 0.5*height + 200*sin(t)

ellipse(x, y, 20, 20)



Did you ever have a Spirograph toy when you were a kid?

def setup():

size(900, 450)

def draw():

t = 0.02*frameCount

x = 0.5*width + 200*cos(t) + 30*cos(11*t)

y = 0.5*height + 200*sin(t) - 30*sin(11*t)

ellipse(x, y, 5, 5)





How about something that starts to resemble physics? A really,
really low-tech animation of an planet orbiting a star.

def setup():

size(900, 450)

def draw():

t = 0.01*frameCount

xsun = 0.5*width

ysun = 0.5*height

ellipse(xsun, ysun, 20, 20)

rplanet = 200

xplanet = xsun + rplanet*cos(t)

yplanet = ysun + rplanet*sin(t)

ellipse(xplanet, yplanet, 10, 10)



Let’s add a moon in orbit around the planet.

def draw():

t = 0.01*frameCount

xsun = 0.5*width

ysun = 0.5*height

# clear screen before each new frame

background(128)

# draw sun

ellipse(xsun, ysun, 20, 20)

rplanet = 200

xplanet = xsun + rplanet*cos(t)

yplanet = ysun + rplanet*sin(t)

# draw planet

ellipse(xplanet, yplanet, 10, 10)

rmoon = 30

xmoon = xplanet + rmoon*cos(t*365/27.3)

ymoon = yplanet + rmoon*sin(t*365/27.3)

# draw moon

ellipse(xmoon, ymoon, 5, 5)



How about adding an inner planet?

def draw():

... other stuff suppressed ...

# draw moon

ellipse(xmoon, ymoon, 5, 5)

# add second planet

year_mercury_days = 115.88 # from Wikipedia

T_ratio = year_mercury_days/365.25

R_ratio = T_ratio**(2.0/3)

xplanet = xsun + R_ratio*rplanet*cos(t/T_ratio)

yplanet = ysun + R_ratio*rplanet*sin(t/T_ratio)

ellipse(xplanet, yplanet, 7, 7)



Animate a pendulum (skip?)

def setup():

size(900, 450)

def draw():

t = 0.01*frameCount

g = 9.8

L = 2.0

degree = PI/180

amplitude = 20*degree

omega = sqrt(g/L)

theta = amplitude * sin(omega*t)

xbob = L * sin(theta)

ybob = L * cos(theta)

# convert coordinates into pixel coordinates

... continued on next slide ...



def draw():

... continued from previous slide ...

# convert coordinates into pixel coordinates

xpixel_pivot = 0.5*width

ypixel_pivot = 0.1*height

scale = 100.0 # pixels per meter

xpixel_bob = xpixel_pivot + scale*xbob

ypixel_bob = ypixel_pivot + scale*ybob

# clear the screen for each new frame of animation

background(128)

# draw the string

line(xpixel_pivot, ypixel_pivot, xpixel_bob, ypixel_bob)

# draw the bob

ellipse(xpixel_bob, ypixel_bob, 20, 20)



Animate a mass bobbing on a spring

def draw():

t = 0.01*frameCount

omega = 1.0

amplitude = 0.5

Lequilibrium = 2.0

xbob = 0

ybob = Lequilibrium + amplitude * cos(omega*t)

xpixel_anchor = 0.5*width

ypixel_anchor = 0.01*height

scale = 100.0

xpixel_bob = xpixel_anchor + scale*xbob

ypixel_bob = ypixel_anchor + scale*ybob

// draw the bob

rbob = 15

ellipse(xpixel_bob, ypixel_bob, 2*rbob, 2*rbob)



Clear screen between frames; draw the spring

def draw():

... other stuff suppressed ...

# clear the screen for each new frame

background(200)

# draw the bob

rbob = 15

ellipse(xpixel_bob, ypixel_bob, 2*rbob, 2*rbob)

# draw the spring as a series of zig-zag lines

nzigzag = 20

for i in range(nzigzag):

spring_top = ypixel_anchor

spring_bottom = ypixel_bob - rbob

dy = (spring_bottom-spring_top)/nzigzag

xzig = xpixel_anchor - 20

yzig = ypixel_anchor + i*dy

xzag = xpixel_anchor + 20

ymid = yzig + 0.5*dy

yzag = yzig + dy

line(xzig, yzig, xzag, ymid)

line(xzag, ymid, xzig, yzag)



Let’s add some “physics” to the spring.

# we will update position & velocity frame-by-frame,

# so we store them in these "global" variables

y = 1.49 # need to change this to make anything happen!

vy = 0.0

def draw():

dt = 0.01

k = 20.0

m = 1.0

g = 9.8

Lrelaxed = 1.0

y = y + vy*dt

Fy = m*g - k*(y-Lrelaxed)

vy = vy + (Fy/m)*dt

xbob = 0

ybob = Lrelaxed + y

... the rest is unchanged ...

https://en.wikipedia.org/wiki/Leapfrog_integration

https://en.wikipedia.org/wiki/Leapfrog_integration


A “breakout” game coded by a Fall 2017 (and Fall 2018) student.

This was done in Java Processing. Let’s try to imitate it in Python!



def setup():

size(900, 450)

global b

# Make rectangle location be its center position

rectMode(CENTER)

# Instantiate the state of the game board

b = Breakout()

def draw():

global b

b.update()

b.draw()

class Breakout:

# "Constructor" for new Breakout object

def __init__(self):

... continued on next slide ...



class Breakout:

def __init__(self):

# various screen boundaries

self.ytop = 0.0

self.ybot = height

self.xleft = 0.0

self.xright = width

# ball’s size, position, velocity

self.rball = 7.0

self.xball = 0.5*width

self.yball = 0.5*height

self.speed = 3.0

self.vxball = self.speed/sqrt(2)

self.vyball = self.speed/sqrt(2)

def update(self):

... see next slide ...

def draw(self):

... see next slide ...



class Breakout:

def __init__(self):

... see previous slide ...

def update(self):

dt = 1.0

# use ball velocity to update ball position

self.xball += self.vxball*dt

self.yball += self.vyball*dt

# update ball velocity if it hits the game boundary

if ((self.xball >= self.xright) or

(self.xball <= self.xleft)):

self.vxball *= -1.0

if ((self.yball >= self.ybot) or

(self.yball <= self.ytop)):

self.vyball *= -1.0

def draw(self):

... see next slide ...



class Breakout:

def __init__(self):

... see earlier slide ...

def update(self):

... see previous slide ...

def draw(self):

# clear the screen

background(200)

# draw the ball (black)

fill(color(0, 0, 0))

ellipse(self.xball, self.yball,

2*self.rball, 2*self.rball)



... insert this into Breakout :: __init__

# paddle’s location and x,y thickness

self.xpaddle = 0.5*width

self.ypaddle = 0.95*height

self.dxpaddle = 0.1*width

self.dypaddle = 0.02*height

... insert this into Breakout :: update

# make the paddle follow the horizontal mouse position

self.xpaddle = mouseX

# check for ball bouncing off of the paddle

if (abs(self.yball - self.ypaddle) < self.dypaddle/2 and

abs(self.xball - self.xpaddle) < self.dxpaddle/2 and

self.vyball > 0):

self.vyball *= -1.0

... insert this into Breakout :: draw

# draw the paddle (white)

fill(color(255, 255, 255))

rect(self.xpaddle, self.ypaddle,

self.dxpaddle, self.dypaddle)



class Brick:

def __init__(self, x, y, dx, dy):

self.x = x

self.y = y

self.dx = dx

self.dy = dy

self.rcolor = random(0, 255)

self.gcolor = random(0, 255)

self.bcolor = random(0, 255)

def checkCollision(self, x, y):

if abs(x-self.x) > 0.5*self.dx:

return False

if abs(y-self.y) > 0.5*self.dy:

return False

return True

def draw(self):

fill(color(self.rcolor, self.gcolor, self.bcolor))

rect(self.x, self.y, self.dx, self.dy)



... insert into Breakout :: __init__

# make list of bricks

self.bricks = []

ncol = 10

for irow in range(5):

for jcol in range(ncol):

dxbrick = 1.0*width/ncol

dybrick = 0.05*height

xbrick = (jcol+0.5)*dxbrick

if (irow % 2) != 0:

xbrick += 0.5*dxbrick

ybrick = 0.1*height + (irow+0.5)*dybrick

self.bricks.append(Brick(x=xbrick, y=ybrick,

dx=dxbrick, dy=dybrick))

... insert into Breakout :: draw

# draw the bricks

for b in self.bricks:

b.draw()



... insert into Breakout :: update

# check for collisions with bricks

for i in range(len(self.bricks)):

b = self.bricks[i]

if b.checkCollision(self.xball, self.yball):

# collision! reverse the ball’s velocity

self.vxball *= -1.0

self.vyball *= -1.0

# delete the struck brick from the list!

self.bricks.pop(i)

# don’t check any more bricks this frame,

# as we modified the list of bricks

break



... in Breakout :: __init__

self.previousMouseX = mouseX

...

... in Breakout :: update

# estimate the horizontal velocity of the paddle

vxpaddle = (mouseX - self.previousMouseX)/dt

self.previousMouseX = mouseX

...

... upon detecting collision with paddle

# allow paddle velocity to affect horizontal

# ball velocity, since otherwise we can get

# stuck with bricks that cannot be reached

self.vxball += vxpaddle

# don’t let ball velocity become too horizontal

minvh = 0.5*self.speed

if abs(self.vyball) < minvh:

self.vyball = -minvh

# but keep the overall ball speed constant

temp_speed = sqrt(self.vxball**2 + self.vyball**2)

self.vxball *= self.speed/temp_speed

self.vyball *= self.speed/temp_speed





I The easiest way to get started with the original Java-based
version of Processing is to start with this easy online video
tutorial that will get you coding in Processing in about an
hour! No download or software install is needed for this
tutorial — you type your first programs directly into your web
browser as you follow along with the video.
http://hello.processing.org

I For the Python version, work through the first few tutorials at
http://py.processing.org/tutorials

I If you’re in Addams Hall often, you might ask Orkan Telhan if
he has ideas — I believe he still teaches Processing in
FNAR 264 / VLST 264, “Art, Design, and Digital Culture.”

I There are also tons of examples at http://processing.org
that you could use as starting points or for inspiration, though
again these examples use the Java version of Processing.

I In Fall 2017, ten students sent me Processing sketches! I
include a few screen captures on the next few slides.

http://hello.processing.org
http://py.processing.org/tutorials
http://processing.org














An example from a Fall 2013 student: drawing a fractal.



Another Fall 2013 student: ball bouncing between two springs



An example from a Fall 2015 student: an animated panda.



An example from a Fall 2015 student: a rotating fractal.



An example from a Fall 2015 student: a minion.



Fall 2015 student: bird moves where you move the mouse pointer.



Physics 8 — Wednesday, November 27, 2019
I I’ll put take-home practice exam (due 12/6 or 12/9) online this

evening. I put 4 years’ old exams online at
http://positron.hep.upenn.edu/p8/files/oldexams/

I Extra-credit options (if you’re interested):
I Learn to use Mathematica (ask me how), which is a system for

doing mathematics by computer. (It is the brains behind
Wolfram Alpha.) Penn’s site license makes Mathematica
free-of-charge for SAS and Wharton students.

I Use “Processing.py” (or ordinary “Processing”) to write a
program to draw or animate whatever interests you. (Not
necessarily physics-related.)

I Read O/K ch9 on columns & summarize what you learned.
I Read Mazur ch13 on gravity & summarize what you learned.
I Go through Prof. Phil Nelson’s book on using Python for data

modeling. Several Huntsman students seem keen to do this.
I Respond to podcast about near-fatal flaw in Citigroup Center,

601 Lexington Ave, NYC
http://positron.hep.upenn.edu/p8/files/citicorp_tower.mp3

I Pursue your own XC idea: phys/math/coding/structures/etc
I Today’s examples online at
http://positron.hep.upenn.edu/p8/2018/files/pyprocessing/

http://positron.hep.upenn.edu/p8/files/oldexams/
http://positron.hep.upenn.edu/p8/files/citicorp_tower.mp3
http://positron.hep.upenn.edu/p8/2018/files/pyprocessing/


Physics 8 — Monday, December 2, 2019

I Final exam (25%) is Thu, Dec 12, noon–2pm, DRL A1.

I I’ll try to book a room for a review session on Wed, Dec 11,
preferably mid-afternoon.

I Pick up take-home practice exam (10%) in back of room.

I If you turn it in on Friday (in class, or in my office, DRL
1W15, by 5pm), I’ll grade it and return it to you (email PDF)
on Monday evening, Dec 9.

I If you turn it in next Monday (in class, or in my office, by
5pm), I’ll return it to you on Wednesday, Dec 11. If I don’t
have your exam by 5pm on Monday, Dec 9, your score is zero,
no exceptions, so that I can return graded exams promptly.

I 4 previous years’ exams & practice exams are at
http://positron.hep.upenn.edu/p8/files/oldexams

I Periodic motion (oscillation, vibration) is our last topic this
term. Alas, this year’s exam schedule doesn’t allow us to
include it in the homework or the exam.

http://positron.hep.upenn.edu/p8/files/oldexams


Vibrations/oscillations

I Are ubiquitous (look around — or listen — for examples!)
because anything in stable equilibrium can oscillate about the
equilibrium point. (Illustration.)

Picture a ball at the bottom of a round container. Is it in stable
equilibrium at the bottom? What happens if I slide it over a bit
and then let go of it?

I The restoring force pushes it back toward the equilibrium
position. Once it reaches the equilibrium position, the net
force is zero, but by that point the ball is in motion, so it
continues past the equilibrium point until the restoring force
eventually reverses its direction. It keeps moving back and
forth until eventually the energy is dissipated by friction, and
the ball comes to rest in the equilibrium position.

I Contrast with neutral or unstable equilibrium: no restoring
force in these cases.



Oscillations / vibrations

I The restoring force that keeps an object stable is the same
restoring force that causes the object to vibrate when
displaced.

I The simplest form for a restoring force is Hooke’s law:

Fx = −k (x − x0)

I A linear restoring force is the most common case, for small
displacements. We study it because it is ubiquitous and
because it is relatively easy to analyze.

I If there is a linear restoring force (i.e. if the force is
proportional to the displacement) and negligible friction, then
the math works out cleanly with sines and cosines, and we call
the motion Simple Harmonic Motion.



skip math — here in case you’re curious
Hooke’s law for a block on a horizontal spring is

Fx = −k (x − x0)

(Note: for vertical orientation, the equilibrium position is offset
downward by mg/k , after which the math is identical.)
Newton’s 2nd law for the block of mass m then reads

max = −k (x − x0)

To simplify the math, let x0 = 0 for the moment. Then

max = −kx

m
d2x

dt2
= −kx

A function whose second derivative is proportional to the original
function (with a negative coefficient) is a sine or a cosine.

x(t) = A sin(ωt + φi )



Plugging [skip math — it’s here for your curiosity]

x(t) = A sin(ωt + φi )

into
max = −kx

works, using “angular frequency” ω (radians/second)

ω =

√
k

m

Or (more familiar) “frequency” (cycles/second, or Hz)

f =
ω

2π
=

1

2π

√
k

m

check:

vx(t) =
dx

dt
= ωA cos(ωt + φi )

max(t) = m
dvx
dt

= −mω2A sin(ωt + φi ) = −kA sin(ωt + φi ) = −kx



For a mass oscillating on a spring at its “natural frequency,” i.e.
the frequency at which it oscillates if I pluck it or whack it and
then leave it alone

ω0 = 2πf0 =

√
k

m

and the motion is sinusoidal in time:

x(t) = xeq + A sin(ω0t + φi )

I xeq is equilibrium position (usually we choose xeq = 0)

I A is called the amplitude

I The “initial phase” φi tells you what’s happening at t = 0

I φi = 0 or π means displacement w.r.t. xeq is zero at t = 0

I φi = ±π/2 means displacement is max(min)imum at t = 0

I notice sin(ωt ± π/2) = ± cos(ωt)



x(t) = xeq + A sin(ω0t + φi )

Writing x(t) this way is usually more complicated than necessary.
The most common cases for φi are:

I φi = 0: at t = 0, (x − xeq) = 0 and vx > 0 (maximum)

x(t) = xeq + A sin(ω0t)

I φi = π/2: at t = 0, (x − xeq) > 0 (maximum) and vx = 0

x(t) = xeq + A cos(ω0t)

I φi = π: at t = 0, (x − xeq) = 0 and vx < 0 (minimum)

x(t) = xeq − A sin(ω0t)

I φi = −π/2: at t = 0, (x − xeq) < 0 (minimum) and vx = 0

x(t) = xeq − A cos(ω0t)



As another simplification, usually we define the x axis so that
xeq = 0. Then for the two most common cases:

I at t = 0, x = 0 and vx > 0

x(t) = A sin(ω0t)

vx(t) = ω0A cos(ω0t)

I at t = 0, x > 0 and vx = 0

x(t) = A cos(ω0t)

vx(t) = −ω0A sin(ω0t)

Let’s try this with graphs instead of equations. The next few
graphs will assume that we choose xeq = 0.



Oscillation: vinitial = 0, xinitial > 0: looks like a cosine



now reduce amplitude by half from previous slide



Oscillation: vinitial > 0, xinitial = 0: looks like a sine



Let’s try some examples using a coordinate system that looks like
this. So xeq = 0 and the x axis points upward.



A

C

B

D



What’s the amplitude of this motion? Period? Frequency?



What’s the amplitude of this motion?



What’s the amplitude of this motion?



What’s the amplitude of this motion? What is xeq?



Amplitude? xeq? Period? Frequency? Angular frequency?



I Worth remembering: natural frequency for a mass on a spring

f =
1

2π

√
k

m

I double k → multiply f by
√

2
I double m → divide f by

√
2

I For a wide range of equilibrium situations in which the
restoring force is provided by some form of elasticity,
I more stiffness → higher f
I more mass → lower f

I See same
√

stiffness
inertia trend in beams, skyscrapers, etc.

I But pendulum is an exception, because restoring force ∝ m.
We’ll see in a moment.

I Another surprising result: frequency of oscillation is
independent of amplitude

I Let’s use a much stiffer spring and a much larger mass to
illustrate this last result! How can we measure k?

I fall 2019: measured period 15% larger than predicted;
next time try measuring k by adding 14 pound bowling
ball to my mass, to reduce effect of any nonlinearity.
That also avoids effect of rope (if any) stretching under
load.

I Note 2020-01-10: using Mary as the “bob,” k = 681
N/m (using frequency), but I’ve measured 980 N/m in
past years (using gravity).



Caution: for this situation, if you want to graph the length of the
spring vs. time, the “length” coordinate increases in the
downward direction, and “` = 0” is at the ceiling.



We wrote x(t) in terms of ω = “natural angular frequency:”

x = A sin(ωt + φi )

but we could have equivalently used f = “natural frequency:”

x = A sin(2πf t + φi )

I f = frequency, measured in cycles/sec, or Hz (hertz)

I ω = f
2π is angular frequency, measured in radians/sec, or s−1

I The frequency f = 2πω is much more intuitive than ω

I Using ω keeps the equations cleaner — can be helpful for
derivations, etc., so that you don’t have to keep writing 2π



“angular velocity” ω is our old friend from studying circular motion:



“frequency” f = ω
2π is more familiar from music, etc.



I A above middle C: 440 Hz

I Middle C: 261.63 Hz

I 440× ( 1
2 )

3
4 = 261.63

I Octave = factor of 2 in
frequency f

I Half step = factor of 12
√

2
in frequency

I Whole step = factor of
6
√

2 in frequency

I Major scale (white keys,
starting from C) =
(root) W W H W W W H

I Minor scale (white keys,
starting from A) =
(root) W H W W H W W



If the amplitude of simple harmonic motion doubles, what happens
to the frequency (i.e. the natural frequency) of the system?

(A) The frequency is 1/2 as large.

(B) The frequency is 1/
√

2 as large.

(C) The frequency is unchanged.

(D) The frequency is
√

2 times as large.

(E) The frequency is 2 times as large.



If the amplitude of simple harmonic motion doubles, what happens
to the energy of the system?

(A) The energy is unchanged.

(B) The energy is
√

2 times as large.

(C) The energy is 2 times as large.

(D) The energy is 4 times as large.

One way to see that (D) is correct is to write

x = A sin(ωt) vx = ωA cos(ωt)

and then write out the energy

1

2
mv 2 +

1

2
kx2

and see that energy is proportional to A2.



Physics 8 — Monday, December 2, 2019

I Final exam (25%) is Thu, Dec 12, noon–2pm, DRL A1.

I I’ll try to book a room for a review session on Wed, Dec 11,
preferably mid-afternoon.

I Pick up take-home practice exam (10%) in back of room.

I If you turn it in on Friday (in class, or in my office, DRL
1W15, by 5pm), I’ll grade it and return it to you (email PDF)
on Monday evening, Dec 9.

I If you turn it in next Monday (in class, or in my office, by
5pm), I’ll return it to you on Wednesday, Dec 11. If I don’t
have your exam by 5pm on Monday, Dec 9, your score is zero,
no exceptions, so that I can return graded exams promptly.

I 4 previous years’ exams & practice exams are at
http://positron.hep.upenn.edu/p8/files/oldexams

I Periodic motion (oscillation, vibration) is our last topic this
term. Alas, this year’s exam schedule doesn’t allow us to
include it in the homework or the exam.

http://positron.hep.upenn.edu/p8/files/oldexams


Physics 8 — Wednesday, December 4, 2019

I Practice exam: If you turn it in Monday (in class, or in my
office, by 5pm), I’ll return it to you on Wed, Dec 11. If I don’t
have your exam by 5pm on Monday, Dec 9, your score is zero,
no exceptions, so that I can return graded exams promptly.

I 4 previous years’ exams & practice exams are at
http://positron.hep.upenn.edu/p8/files/oldexams

I Extra credit options (until Thu, Dec 19):
I O/K ch9 (columns)
I Citigroup Center “structural integrity” podcast
I Mazur ch13 (gravity), ch14 (Einstein relativity)
I Code something in Processing or Py.Processing
I Go through tutorials to learn Wolfram Mathematica
I Go through Prof. Nelson’s python data modeling book
I You can suggest something else!

http://positron.hep.upenn.edu/p8/files/oldexams


I Worth remembering: natural frequency for a mass on a spring

f =
1

2π

√
k

m

I double k → multiply f by
√

2
I double m → divide f by

√
2

I For a wide range of equilibrium situations in which the
restoring force is provided by some form of elasticity,
I more stiffness → higher f
I more mass → lower f

I See same
√

stiffness
inertia trend in beams, skyscrapers, etc.

I But pendulum is an exception, because restoring force ∝ m.
We’ll see in a moment.

I Another surprising result: frequency of oscillation is
independent of amplitude

I Unfortunately, with A6 booked for back-to-back classes, I
didn’t have occasion to figure out why Monday’s measured
period for me-on-spring was 15% larger than our prediction.

I Let’s make sure we understand how we got the prediction.



(From 2017 practice exam): Your physics teacher Bill gets the
crazy idea that he himself will be the “mass” bobbing up and down
on the end of a stiff spring that is attached to the ceiling of DRL
room A2. Bill first hangs the spring from the ceiling and measures
its relaxed length to be 0.85 meters. Then he climbs the ladder,
gradually applies his full weight to the lower end of the spring (by
sitting on a little attached bar), and measures the spring’s new
equilibrium length (the length of the spring when Bill is in static
equilibrium) to be 1.55 meters.

[a] If Bill’s mass is 70 kg, what is the spring constant k of the
spring?

(A) (70)/(1.55− 0.85) = 100N/m

(B) (1.55− 0.85)/(70× 9.8) = 1.02× 10−3 N/m

(C) (70× 9.8)/(0.85) = 807N/m

(D) (70× 9.8)/(1.55− 0.85) = 980N/m



[b] If someone pulls down on Bill’s feet until the spring’s length is
1.85 meters, holds them there for a moment, then lets go (without
giving any sort of push), will Bill’s motion repeat itself
periodically? If so, how often? If not, why not?

(A) No: the spring will return to ` = 1.55m and stay there.

(B) Yes, with period T = 2π
√

70/980 = 1.7 s

(C) Yes, with period T = 2π
√

70× 9.8/980 = 0.83 s

(D) Yes, with period T = 2π
√

980/70 = 23.5 s

(E) Yes, with period T =
√

70/980 = 0.26 s

(F) Yes, with period T =
√

70/980/(2π) = 0.043 s

(G) Yes, with period T =
√

980/70 = 3.7 s

(H) Yes, with period T =
√

980/70/(2π) = 0.60 s



[c] Sketch a graph of the length of the spring as a function of time,
where t = 0 is where the person lets go of Bill’s feet. Be sure to
label the important features of the graph, e.g. period and
amplitude.

[d] If the person instead pulls down on Bill’s feet until the spring’s
length is 1.70 meters, then lets go, how will the period of the
motion be affected? (State what the period will be.)

[e] How will the amplitude of the motion be affected? (State what
the amplitude will be.)

[f] If Bill somehow managed to hold a 70 kg medicine ball while
sitting on this same spring, thus effectively doubling his mass,
would the natural period of the motion be affected? (State what
the period would be.)



If the amplitude of simple harmonic motion doubles, what happens
to the frequency (i.e. the natural frequency) of the system?

(A) The frequency is 1/2 as large.

(B) The frequency is 1/
√

2 as large.

(C) The frequency is unchanged.

(D) The frequency is
√

2 times as large.

(E) The frequency is 2 times as large.



If the amplitude of simple harmonic motion doubles, what happens
to the energy of the system?

(A) The energy is unchanged.

(B) The energy is
√

2 times as large.

(C) The energy is 2 times as large.

(D) The energy is 4 times as large.

One way to see that (D) is correct is to write

x = A sin(ωt) vx = ωA cos(ωt)

and then write out the energy

1

2
mv 2 +

1

2
kx2

and see that energy is proportional to A2.



Pendulum: gravity provides restoring torque

τ = Iα ⇒ α =
τ

I
τ = −mg` sin θ

I = m`2

Using sin θ = θ − θ3/6 + θ5/120 +− · · · ,

α = −g sin θ

`
≈ −gθ

`

for small θ, so
d2θ

dt2
= −g

`
θ

So for a pendulum (a point mass on a string, small amplitude),

ω0 =

√
g

`
f0 =

1

2π

√
g

`

(Mazur also generalizes this to objects with more complicated
rotational inertias. That’s only relevant for XC problems.)



Remember: oscillator period is independent of the amplitude

Mass on spring (use “0” to mean “natural”):

f0 =
1

2π

√
k

m
T0 = 2π

√
m

k

Simple pendulum (small heavy object at end of “massless” cable):

f0 =
1

2π

√
g

`
T0 = 2π

√
`

g

For a pendulum, the period is also independent of the mass,
because the restoring force (due to gravity) is proportional to
mass, so the mass cancels out.



Let’s measure the oscillation period T0 for this ball on a string, for
a few different values of `.

Remember,

T0 =
1

f0
= 2π

√
`

g

To speed us up, I’ve pre-calculated everything but `:

T0 = 2π

√
`

g
=

(
2π

√
1 meter

g

) √
`

1 meter

T0 = (2.01 seconds) ×
√

`

1 meter

Does it depend on amplitude? Does it depend on mass?



Imagine your old playground swing set. I’ll bet you remember
everybody going back and forth at about the same time interval,
even if some kids had different amplitudes, different phases, or
even different masses!

You probably also remember the time between swings to be
something like a few seconds:

T0 = 2π

√
`

g
≈ 2π

√
3.1 m

9.8 m/s2
≈ 3.5 s

Notice that this is independent of the mass of the kid.

Let’s try this for a very lightweight and a much heavier “kid!”

By the way, how often should I “kick” if I want to make the swing
go as high as possible? Time kicks to swing’s natural motion!



Most important points about periodic motion
I Meaning of amplitude, period, frequency
I Drawing or interpreting a graph of periodic motion
I Don’t confuse angular frequency vs. frequency (ω = 2πf )
I Any system that is in stable equilibrium can undergo

vibrations w.r.t. that stable position.
I Mass on spring: (natural) frequency is

f0 =
1

2π

√
k

m

I Pendulum: (natural) frequency is

f0 =
1

2π

√
g

`

I For a given mass, a larger restoring force (more stiffness)
increases f0.

I If the restoring force is elastic (not gravitational), then a
bigger mass decreases f0. For pendulum, f0 doesn’t depend on
mass, because restoring force is gravitational.



We often write x(t) in terms of ω = “natural angular frequency:”

x = A cos(ωt+φi )

but we can equivalently used f = “natural frequency:”

x = A cos(2πf t + φi )

I f = frequency, measured in cycles/sec, or Hz (hertz)

I ω = f
2π is angular frequency, measured in radians/sec, or s−1

I The frequency f = 2πω is much more intuitive than ω

I Using ω keeps the equations cleaner — can be helpful for
derivations, etc., so that you don’t have to keep writing 2π



“angular velocity” ω is our old friend from studying circular motion:



“frequency” f = ω
2π is more familiar from music, etc.



I A above middle C: 440 Hz

I Middle C: 261.63 Hz

I 440× ( 1
2 )

3
4 = 261.63

I Octave = factor of 2 in
frequency f

I Half step = factor of 12
√

2
in frequency

I Whole step = factor of
6
√

2 in frequency

I Major scale (white keys,
starting from C) =
(root) W W H W W W H

I Minor scale (white keys,
starting from A) =
(root) W H W W H W W



resonance: Tacoma Narrows Bridge collapse

http://www.youtube.com/watch?v=j-zczJXSxnw

I We may not have time for this 6-minute video in class. If
you’ve never seen it, I highly recommend watching it!

I This one has no audio. There’s another version of this video
out there that has newsreel-style audio.

http://www.youtube.com/watch?v=j-zczJXSxnw


Let’s return to our two favorite examples of oscillating systems.

Natural frequency & period for mass on spring:

f0 =
1

2π

√
k

m
T0 = 2π

√
m

k

Natural frequency & period for simple pendulum (small heavy
object at end of “massless” cable):

f0 =
1

2π

√
g

`
T0 = 2π

√
`

g



Oscillation: vinitial = 0, xinitial 6= 0



Missing from previous picture: damping

I Without some kind of external push, a swingset eventually
slows to a stop, right? Eventually the mechanical energy is
dissipated by friction, air resistance, etc.

I A piano wire doesn’t vibrate forever, does it?

I Normally once you hit a key, the sound dies out after about
half a second or so.

I If your foot is on the sustain pedal, the sound lasts several
seconds.

I What is the difference?

I It’s the felt damper touching the strings!



Oscillation (damped, Q=10, f=1 Hz)



Oscillation (damped, Q=100, f=1 Hz)



Oscillation (damped, Q=100, f=1 Hz)



Damped, Q=100, f=1 Hz: energy vs time (in periods)



Damped, Q=1000, f=1 Hz: energy vs time (in periods)



For a given frequency f ,

I Less damping ↔ higher Q

I More damping ↔ lower Q

I Q = ωτ is number of radians after which energy has
decreased by a factor e−1 ≈ 0.37

I Equivalently, Q = 2πf τ is number of cycles after which
energy has decreased by a factor e−2π ≈ 0.002

I More simply, Q is roughly the number of periods after which
nearly all of the energy has been dissipated.

I “Tinny” sound of frying pan ↔ low Q (fast dissipation)

I Smooth, enduring sound of a gong, or a bell tower ↔ high Q
(slow dissipation)



Suppose you want to go for a long time on a swing set.

Dissipation is continuously removing energy.

If you’re going to keep going for many minutes, you need some
way of continuously putting energy back in.

If you’re a big kid, you swing your feet. If you’re a little kid, your
parent or older sibling pushes you.

The push of parent or swing of feet has to be at approximately the
natural frequency of the swingset, or else you don’t get anywhere!

But if your pushes are close to the right interval, the amplitude
gets larger and larger with each successive push, until eventually
the rate at which the push is adding energy equals the rate at
which dissipation is removing energy.

Hitting the right frequency is called resonance



The higher the Q (i.e. slower dissipation), the more periods you
have available for building up energy. A high Q makes it easy to
build up a really big amplitude!

But the higher the Q, the closer you have to get to the right
frequency in order to get the thing moving.



f0 = 1000 Hz, Q = 10: energy and phase vs. fpush



f0 = 1000 Hz, Q = 30: energy and phase vs. fpush



f0 = 1000 Hz, Q = 100: energy and phase vs. fpush



Physics 8 — Wednesday, December 4, 2019

I Practice exam: If you turn it in Monday (in class, or in my
office, by 5pm), I’ll return it to you on Wed, Dec 11. If I don’t
have your exam by 5pm on Monday, Dec 9, your score is zero,
no exceptions, so that I can return graded exams promptly.

I 4 previous years’ exams & practice exams are at
http://positron.hep.upenn.edu/p8/files/oldexams

I Extra credit options (until Thu, Dec 19):
I O/K ch9 (columns)
I Citigroup Center “structural integrity” podcast
I Mazur ch13 (gravity), ch14 (Einstein relativity)
I Code something in Processing or Py.Processing
I Go through tutorials to learn Wolfram Mathematica
I Go through Prof. Nelson’s python data modeling book
I You can suggest something else!

http://positron.hep.upenn.edu/p8/files/oldexams


Physics 8 — Friday, December 6, 2019
I Practice exam: If you turn it in today by 5pm, I’ll email it

back to you, graded, on Monday evening. If you turn it in
Monday (in class, or in my office, by 5pm), I’ll return it to you
on Wed. If I don’t have your exam by 5pm on Monday, your
score is zero, no exceptions, so that I can return graded exams
promptly. I’ll post solutions online Monday evening.

I Wolfram Alpha ok to solve simultaneous eqns on take-home
I 3× 5 card + “dumb” calculator on final exam
I Review session (optional) Wed 2–4pm DRL A6
I 4 previous years’ exams & practice exams are at
http://positron.hep.upenn.edu/p8/files/oldexams

I Extra credit options (until Thu, Dec 19):
I O/K ch9 (columns)
I Citigroup Center “structural integrity” podcast
I Mazur ch13 (gravity), ch14 (Einstein relativity)
I Code something in Processing or Py.Processing
I Go through tutorials to learn Wolfram Mathematica
I Go through Prof. Nelson’s python data modeling book
I You can suggest something else!

http://positron.hep.upenn.edu/p8/files/oldexams


We often write x(t) in terms of ω = “natural angular frequency:”

x = A cos(ωt+φi )

but we can equivalently used f = “natural frequency:”

x = A cos(2πf t + φi )

I f = frequency, measured in cycles/sec, or Hz (hertz)

I ω = f
2π is angular frequency, measured in radians/sec, or s−1

I The frequency f = 2πω is much more intuitive than ω

I Using ω keeps the equations cleaner — can be helpful for
derivations, etc., so that you don’t have to keep writing 2π



“angular velocity” ω is our old friend from studying circular motion:



“frequency” f = ω
2π is more

familiar from music, etc.

( 12
√

2)4 = 1.2599 ≈ 5
4 (major 3rd)

( 12
√

2)5 = 1.3348 ≈ 4
3 (perfect 4th)

( 12
√

2)7 = 1.4984 ≈ 3
2 (perfect 5th)

( 12
√

2)12 = 2 (an octave!)

I A above middle C: 440 Hz

I Middle C: 261.63 Hz

I 440× ( 1
2 )

3
4 = 261.63

I Octave = factor of 2 in
frequency f

I Half step = factor of 12
√

2
in frequency

I Whole step = factor of
6
√

2 in frequency

I Major scale (white keys,
starting from C) =
(root) W W H W W W H

I Minor scale (white keys,
starting from A) =
(root) W H W W H W W



Let’s return to our two favorite examples of oscillating systems.

Natural frequency & period for mass on spring:

f0 =
1

2π

√
k

m
T0 = 2π

√
m

k

Natural frequency & period for simple pendulum (small heavy
object at end of “massless” cable):

f0 =
1

2π

√
g

`
T0 = 2π

√
`

g



Oscillation: vinitial = 0, xinitial 6= 0



Missing from previous picture: damping

I Without some kind of external push, a swingset eventually
slows to a stop, right? Eventually the mechanical energy is
dissipated by friction, air resistance, etc.

I A piano wire doesn’t vibrate forever, does it?

I Normally once you hit a key, the sound dies out after about
half a second or so.

I If your foot is on the sustain pedal, the sound lasts several
seconds.

I What is the difference?

I It’s the felt damper touching the strings!



Oscillation (damped, Q=10, f=1 Hz)



Oscillation (damped, Q=100, f=1 Hz)



Oscillation (damped, Q=100, f=1 Hz)



Damped, Q=100, f=1 Hz: energy vs time (in periods)



Damped, Q=1000, f=1 Hz: energy vs time (in periods)



For a given frequency f ,

I Less damping ↔ higher Q

I More damping ↔ lower Q

I Q = ωτ is number of radians after which energy has
decreased by a factor e−1 ≈ 0.37

I Equivalently, Q = 2πf τ is number of cycles after which
energy has decreased by a factor e−2π ≈ 0.002

I More simply, Q is roughly the number of periods after which
nearly all of the energy has been dissipated.

I “Tinny” sound of frying pan ↔ low Q (fast dissipation)

I Smooth, enduring sound of a gong, or a bell tower ↔ high Q
(slow dissipation)



Suppose you want to go for a long time on a swing set.

Dissipation is continuously removing energy.

If you’re going to keep going for many minutes, you need some
way of continuously putting energy back in.

If you’re a big kid, you swing your feet. If you’re a little kid, your
parent or older sibling pushes you.

The push of parent or swing of feet has to be at approximately the
natural frequency of the swingset, or else you don’t get anywhere!

But if your pushes are close to the right interval, the amplitude
gets larger and larger with each successive push, until eventually
the rate at which the push is adding energy equals the rate at
which dissipation is removing energy.

Hitting the right frequency is called resonance



The higher the Q (i.e. slower dissipation), the more periods you
have available for building up energy. A high Q makes it easy to
build up a really big amplitude!

But the higher the Q, the closer you have to get to the right
frequency in order to get the thing moving.



f0 = 1000 Hz, Q = 10: energy and phase vs. fpush



f0 = 1000 Hz, Q = 30: energy and phase vs. fpush



f0 = 1000 Hz, Q = 100: energy and phase vs. fpush



(avoiding) resonance in structures

https://99percentinvisible.org/episode/supertall-101/

https://99percentinvisible.org/episode/supertall-101/


(avoiding) resonance in structures



Physics 8 — Friday, December 6, 2019
I Practice exam: If you turn it in today by 5pm, I’ll email it

back to you, graded, on Monday evening. If you turn it in
Monday (in class, or in my office, by 5pm), I’ll return it to you
on Wed. If I don’t have your exam by 5pm on Monday, your
score is zero, no exceptions, so that I can return graded exams
promptly. I’ll post solutions online Monday evening.

I Wolfram Alpha ok to solve simultaneous eqns on take-home
I 3× 5 card + “dumb” calculator on final exam
I Review session (optional) Wed 2–4pm DRL A6
I 4 previous years’ exams & practice exams are at
http://positron.hep.upenn.edu/p8/files/oldexams

I Extra credit options (until Thu, Dec 19):
I O/K ch9 (columns)
I Citigroup Center “structural integrity” podcast
I Mazur ch13 (gravity), ch14 (Einstein relativity)
I Code something in Processing or Py.Processing
I Go through tutorials to learn Wolfram Mathematica
I Go through Prof. Nelson’s python data modeling book
I You can suggest something else!

http://positron.hep.upenn.edu/p8/files/oldexams


Physics 8 — Monday, December 9, 2019

I Practice exam: If you turned it in Friday, I’ll email it back to you,
graded, this evening. Otherwise, I’ll return it to you on Wed. If I
don’t have your exam by 5pm today, your score is zero, with no
exceptions, so that I can put solutions online tonight.

http://www.hep.upenn.edu/~ashmansk/drl_1w15.jpg
I 3× 5 card + “dumb” calculator on final exam (no internet, no

reference materials except 3× 5 card)
I Review session (optional) Wed 2–4pm DRL A6
I 4 previous years’ exams & practice exams are at

http://positron.hep.upenn.edu/p8/files/oldexams
I Extra credit options (until Thu, Dec 19):

I O/K ch9 (columns)
I Citigroup Center “structural integrity” podcast
I Learn about Taipei 101 “Tuned Mass Damper”
I Mazur ch13 (gravity), ch14 (Einstein relativity)
I Code something in Processing or Py.Processing
I Go through tutorials to learn Wolfram Mathematica
I Go through Prof. Nelson’s python data modeling book
I Suggest something else: https://youtu.be/Wiln4BU0zDg

I If you have your clicker here, please turn it in after class.

http://www.hep.upenn.edu/~ashmansk/drl_1w15.jpg
http://positron.hep.upenn.edu/p8/files/oldexams
https://youtu.be/Wiln4BU0zDg


(avoiding) resonance in structures

https://99percentinvisible.org/episode/supertall-101/

Taipei 101 “Damper babies” speaking in their made-up nonsense
language about the Tuned Mass Damper
https://youtu.be/1kwMnB0PAVQ

Short documentary by actor/presenter includes “eating soup on
moving bus” demo of non-inertial reference frames, and interview
with the Taipei 101 architect including architect’s demo that
resembles our in-class meter-stick demos:
https://youtu.be/OSEYOavsKxA

https://99percentinvisible.org/episode/supertall-101/
https://youtu.be/1kwMnB0PAVQ
https://youtu.be/OSEYOavsKxA


Physics can give us new insights into the everyday world. We
should go through this video a second time at end of semester.

https://www.youtube.com/watch?v=XfZFuw7a13E

https://www.youtube.com/watch?v=XfZFuw7a13E


https://www.youtube.com/watch?v=XfZFuw7a13E&t=35

I 0:35 — impulse

I 0:43 — rotational inertia, torque

I 0:51 — torque, periodic motion, velocity, projectile motion

I 2:53 — friction, circular motion, projectile motion (173 s)

I 3:30 — center of mass (210 s)

I 6:18 — friction, “normal force” (378 s)

https://www.youtube.com/watch?v=XfZFuw7a13E&t=378

https://www.youtube.com/watch?v=XfZFuw7a13E&t=35
https://www.youtube.com/watch?v=XfZFuw7a13E&t=378


(avoiding) resonance in structures [ARCH 535]



I list at the link below some (totally optional) questions about the
format of the course. Please take a look. If you’re willing to think
about them, you can answer either via the usual response form or
else include your thoughts anonymously with your course review.
E.g. type anonymous comments now and copy/paste them later.

http://positron.hep.upenn.edu/q008/?date=2019-12-06

I About how many hours did this practice exam take you?

I Are there particular problems from [the practice exam] or
topics from the course that you’d like me to go over in the
review session before the final exam?

I What topics did you enjoy most and least from this course?
Will anything that you have learned in Physics 8 be useful in
your future career? Would you adjust the balance between
covering traditional physics topics and covering applications to
architectural structures? As a result of feedback on this
question from past years, I have dropped Mazur’s chapter 13
(gravity) and substantially expanded the Onouye/Kane
segment of the course.

http://positron.hep.upenn.edu/q008/?date=2019-12-06


I Do you have any comments on the format of Physics 8 (how
to use classroom time, whether to have midterms or quizzes,
how much emphasis to place on homework and reading)? Do
you have suggestions for formatting Physics 9 for next fall in a
way that will help you to learn the material more readily or
will make the course more engaging for you?

I Here is what I am thinking for reading assignments next time.
I welcome your comments and suggestions! I like Mazur’s
non-traditional ordering of topics (momentum and energy
before forces, focus initially on one-dimensional problems),
and I like the conceptual half (the first half) of each of his
chapters. But I think that the second half of each Mazur
chapter, many students in Physics 8 aren’t sure where to
focus their attention. So I’m tempted to keep the first half of
each Mazur chapter but to replace the second half with notes
that I would write up to summarize the key results, with
pointers to the textbook for longer discussions.



I For the Onouye/Kane book, I love the illustrations and the
many architecture-related worked examples. But I think in
many cases it would be nice to have a clearer explanation of
the key results and how to use them. So I’m tempted to
supplement each O/K chapter with my own notes
summarizing the most important results. If I supply notes, you
would read my notes carefully and then just quickly skim
through the corresponding textbook material. Do you think
that would be an improvement? Other suggestions?

I I’d like to make the reading go more efficiently for you, and
better synchronize each week’s reading to that week’s
classroom time. I’d like to distill the O/K material to the key
ideas, simplify the discussion of beams, and add a short
discussion of columns and of stone arches. I also want to
expunge the non-metric units from most of the examples!



I If you have your clicker, please turn it in after class.

I Would 2 lectures @ 90 minutes work better? e.g. MW 3-4:30?

I Future “quiz” idea, to cover a topic from homework already
done, graded, & handed back with solutions:

I pass 1: spend 5 minutes solving the problem on your own, and
hand that in.

I pass 2: spend 5 minutes discussing & solving the problem with
your neighbors, and hand in your copy of that group result.

I If you fix on pass 2 any mistakes from pass 1, you earn back
50% of the corresponding points you lost on pass 1.

I You would do this at the start of class, about once a week,
while I’m setting up demos or handing back graded work.

I Another idea: try to make one question per reading
assignment be some kind of simple calculation (similar in
difficulty to Mazur’s “self-quiz” questions) to help you test
your understanding. Maybe Canvas would grade this
automatically and would let you redo it until you get it right.



I what if we moved some of the HW problem-solving into class
time, and moved some of the demonstrations etc into videos
or animations?

I what if we blocked out an hour on fridays, potentially for
some hands-on lab-like activity in class? (probably more
relevant for physics 009.)

I how helpful would it be for me to replace a large fraction of
the reading with my own typed-up notes, which would be
more focused in content on what we emphasized during
classroom time?

I for the current course content, assuming that we spend 3
hours a week together in some sort of classroom, what would
be the best use of those hours?



I I really like the homework problems from this course. To me,
the homework problems are the most valuable thing you do
here, and I think that most of the problems we solve are a
good fit. IMO, everything else I do is mainly to motivate you
to solve & think carefully about the HW problems.

I It would help me if you could describe what niche this course
fills for you, or what niche you’d like it to fill. Sometimes
people suggest eliminating this course and having ARCH
students take PHYS 150 instead. Sometimes people suggest
having PHYS 8/9 be only one semester, not two. Sometimes
people suggest adding “labs” or (preferably) hands-on versions
of the demonstrations.

I I think that as long as enrollment stays roughly where it is
now, it’s advantageous to offer introductory physics courses
tailored to the interests/needs of various groups of students.

I Anybody thinking of taking Physics 9? It was suggested to
offer Physics 8 every year and eliminate Physics 9, but Prof.
Farley and I both think the Physics 9 topics are quite
valuable, even if they are less tangible than mechanics.



I By the way, the topics for Physics 9 can be summarized as:

I waves, sound, light, fluids, heat, electricity & circuits.
I Understanding these topics is relevant for environmental

systems, energy efficiency, acoustics & soundproofing,
mechanical & plumbing systems, etc.
I If you’ve sat in an old DRL classroom while the medevac

helicopter passed overhead, you know why a designer needs to
understand sound propagation.

I Since so much of what you do is visual, you’re probably
already curious about what light is and how it is emitted,
reflected, absorbed, magnified, affected by passing through
glass & water, observed by human eyes, etc.

I If you’ve felt your ears pop when deep underwater or at high
altitude, if you’ve marveled at the size of the Hoover Dam, or
if you’ve seen the effect of a strong wind on the roof of a
house of the wall of a skyscraper, then you may be curious
how fluids (liquids and gases) work.

I Since a key function of many buildings is to shelter occupants
from variations in outdoor temperature, you may want to learn
some of the physics behind temperature, heat, and energy.



I By the way, the topics for Physics 9 can be summarized as:
I waves, sound, light, fluids, heat, electricity & circuits.

I Since it’s difficult to imagine life in the modern world without
electricity, you might be curious what volts and amps really
are, or why so-called “high-tension” (really “high voltage”)
lines are used to transport electricity over long distances, or
why an electrical outlet provides “alternating current,” while a
flashlight battery provides “direct current.”

I You might also be generally curious how electrical forces hold
atoms together and are responsible for the chemical energy
stored in food and fuel. Or how a rooftop solar panel converts
sunlight into electrical energy.

I We are also tempted to make Physics 9 a more hands-on
course than Physics 8. Sometimes Physics 9 is a smaller
group, which makes it easier to be less formal.

I In 2016, we did some hands-on learning in class, e.g. by
building and measuring some battery-powered circuits. We
also spent a few classes learning to program tiny “Arduino”
computers to let you create gadgets that can interact with the
environment: blinking, sensing, producing sounds, etc.



I For the Physics 9 topics, there is much less need to spend a
lot of time solving intricate homework problems. There are
homework problems, but they are much less rigorous than in
Physics 8.

I In Physics 8, we really want you to become highly skilled,
through lots of practice, at working with forces, vectors, and
torques/moments.

I In Physics 9, we want you to be aware of the many physical
phenomena that affect a design: acoustics, light, the
movement of air and water, heating/cooling, electrical power,
electronic automation.

I So much of the reading takes the form of anecdotes that
illustrate the relevance of the physics. In 2016 & 2018, we did
this using “Physics and Technology for Future Presidents” by
Richard Muller, which most students enjoyed. Next year we
will probably supplement by writing up many real-world
examples drawn from Richard Farley’s long experience in
architecture/engineering practice.

I Also, Physics 8 is no longer a prerequisite for Physics 9.



Physics can give us new insights into the everyday world. We
should go through this video a second time at end of semester.

https://www.youtube.com/watch?v=XfZFuw7a13E

https://www.youtube.com/watch?v=XfZFuw7a13E


https://www.youtube.com/watch?v=XfZFuw7a13E&t=35

I 0:35 — impulse

I 0:43 — rotational inertia, torque

I 0:51 — torque, periodic motion, velocity, projectile motion

I 2:53 — friction, circular motion, projectile motion (173 s)

I 3:30 — center of mass (210 s)

I 6:18 — friction, “normal force” (378 s)

https://www.youtube.com/watch?v=XfZFuw7a13E&t=378

https://www.youtube.com/watch?v=XfZFuw7a13E&t=35
https://www.youtube.com/watch?v=XfZFuw7a13E&t=378


Course recap

I We’ll do a more technical recap at the review session. Here’s
my more philosophical recap of Physics 8.

I A key motivation for architects to study Newtonian mechanics
is to enable you to go on to study architectural structures.

I Prof. Farley has told me several times that he wants students
to enter his Structures course with a solid understanding of
forces, vectors, and torque (“moments”).

I Another motivation to study physics, which Richard Wesley
likes to point out, is that undergraduate Architecture at Penn
is set in a liberal-arts context. Breadth of knowledge is good.

I The “force” concept is notoriously difficult for students to
learn. Even after you’ve learned how to solve homework
problems using forces, it still takes a lot of thinking and
practice to grasp Newton’s three laws fully. Newton’s laws are
counter-intuitive: they defy your innate intuition.

I (1) Law of inertia. (2) ~F = m~a. (3) ~F12 = −~F21.



I (1) Law of inertia. (2) ~F = m~a. (3) ~F12 = −~F21.

I If you told a little kid that if you do nothing to a moving
object, it continues forever with the same direction and speed,
the kid would not believe you.

I Even after you’ve learned calculus, it takes some time to get
used to d2x/dt2 = (1/m) Fx .

I And you can find many examples of book authors who believe,
incorrectly, that ~F12 = −~F21 stops being true if you put such
a large weight on a table that the table collapses.

I The fact that force and acceleration are vectors makes all of
the above even more complicated, since you’re remembering
trigonometry at the same time as you’re learning forces.

I So we began by describing motion, in 1D, to grasp position,
velocity, and acceleration. Then we studied colliding objects in
1D, to cement the idea that when two objects interact, the
motion of both objects is affected. We studied momentum,
then energy, then finally forces and work. Probably different
order from your first physics course.



I Then we moved from 1D to 2D. Vectors/trigonometry!
I That let us model friction quantitatively. It let us solve some

classic projectile-motion problems.
I Then motion in a circle, where we saw that “accelerating”

does not have to mean “changing speed!” That let us
understand the strange effects you feel on a highway offramp,
or the tension in a string on which a ball twirls around.

I Finally we came to rotation and torque, which make
acceleration and forces look easy by comparison.

I That gave us exactly the background we needed for our brief
5-week survey of architectural structures. We used the three
conditions of equilibrium — again and again and again. We
identified forces and their lines-of-action and drew EFBDs.
We grew more and more accustomed to working with torques
(“moments”), through example after example.

I Finally we finished up with periodic motion (“oscillation”),
which is also relevant for structures.

I I hope that along the way, a lot of physics ideas have become
much more comfortable and familiar to you.



I Teaching this course (5× so far) — discussing physics with
you in person and by email, and working on solving physics
problems with many of you — is a huge amount of fun for
me. Doing this job doesn’t feel like “work.”

I I try to make this course interactive, so that I can adapt it to
your interests, your questions, your learning styles. Student
feedback has made this “your” physics course — more so
than “mine.” What I’ve learned from you will help to make
this a better course for future students.

I I’ve tried to push you to learn as much as you reasonably could
about the physics that I think will inform your intuition about
the physical world in which your own creations will reside.

I My goal is to be a good “coach,” rather than a kind of
gatekeeper between you and grad school. Like other coaches,
I can point you in the right direction, and offer help when you
get stuck, but I can’t do the learning for you.

I It has been a great honor to study physics with you this fall!
Best wishes on your exams/reviews and in your careers!



If you’re a senior, expect to see me applauding and shouting out
your name from the Locust Walk gauntlet in the commencement
procession. Email/text if you want a group graduation photo.















































Physics 8 — Monday, December 9, 2019

I Practice exam: If you turned it in Friday, I’ll email it back to you,
graded, this evening. Otherwise, I’ll return it to you on Wed. If I
don’t have your exam by 5pm today, your score is zero, with no
exceptions, so that I can put solutions online tonight.

http://www.hep.upenn.edu/~ashmansk/drl_1w15.jpg
I 3× 5 card + “dumb” calculator on final exam (no internet, no

reference materials except 3× 5 card)
I Review session (optional) Wed 2–4pm DRL A6
I 4 previous years’ exams & practice exams are at

http://positron.hep.upenn.edu/p8/files/oldexams
I Extra credit options (until Thu, Dec 19):

I O/K ch9 (columns)
I Citigroup Center “structural integrity” podcast
I Learn about Taipei 101 “Tuned Mass Damper”
I Mazur ch13 (gravity), ch14 (Einstein relativity)
I Code something in Processing or Py.Processing
I Go through tutorials to learn Wolfram Mathematica
I Go through Prof. Nelson’s python data modeling book
I Suggest something else: https://youtu.be/Wiln4BU0zDg

I If you have your clicker here, please turn it in after class.

http://www.hep.upenn.edu/~ashmansk/drl_1w15.jpg
http://positron.hep.upenn.edu/p8/files/oldexams
https://youtu.be/Wiln4BU0zDg
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