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An Order-independent Representation

The Einstein summation notation is an algebraic
short-hand for expressing multicomponent Carte-
sian quantities, manipulating them, simplifying
them, and expressing the expressions in a com-
puter language short-hand. It manipulates ex-
pressions involving determinants, rotations, mul-
tidimensional derivatives, matrix inverses, cross
products and other multicomponent mathemati-
cal entities.

Esn can help you write closed form expressions
for such things as deriving and computing messy
multidimensional derivatives of expressions, ex-
pressing multidimensional Taylor series and chain
rule, expressing the rotation axis of a 3D rota-
tion matrix, finding the representation of a matrix
in another coordinate system, deriving a fourth
(4D) vector perpendicular to 3 others, or rotating
around N-2 axes simultaneously, in N dimensions.

Esn is an “expert friendly” notation: after an ini-
tial investment of time, it converts difficult prob-
lems into problems with workable solutions. It
does not make “easy” problems easier, however.

The algebraic terms explicitly delineate the nu-
merical components of the equations so that the
tensors can be manipulated by a computer. A C-
preprocessor has been implemented for this pur-
pose, which converts embedded Einstein summa-
tion notation expressions into C Language expres-
sions.

In conventional matrix and vector notation, the
multiplication order contains critical information
for the calculation. In the Einstein subscript

form, however, the terms in the equations can
be arranged and factored in different orders with-
out changing the algebraic result. The ability to
move the factors around as desired is a particu-
larly useful symbolic property for derivations and
manipulations.

1 Mathematical
Tensors

Background:

In general, abstract “coordinate independent”
multidimensional mathematical operators and
objects can be categorized into two types: lin-
ear ones like a vector or a matrix, and non-linear
ones. Although there are many different defini-
tions, for this document it will suffice to think
of tensors as the set of (multi)linear multidi-
mensional mathematical objects — whatever the
nonlinear ones are, they are not tensors. Vari-
ous other tensor definitions exist — for instance,
a tensor can be thought of as the mathematical
objects which satisfy certain transformation rules
between different coordinate systems.

Different numerical representations of a Carte-
sian tensor are obtained by transforming be-
tween Cartesian coordinate systems, which have
orthonormal basis vectors, while a generalized
tensor is transformed in non-orthonormal coor-
dinates.

The components of a Cartesian tensor are magni-
tudes projected onto the orthogonal Cartesian ba-
sis vectors; three dimensional N-th order Carte-
sian tensors are represented in terms of 3V com-
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ponents.

The arrays of numbers are not the tensors them-
selves. A given set of numbers represent the ten-
sors, but only in a particular coordinate system.
The numerical representation of a vector, such as

1

2 |, only has geometric meaning when we also

3
know the coordinate system’s basis vectors — the
vector goes one unit in the first basis vector direc-
tion, two units in the second basis vector direc-
tion, and three units along the third basis vector
direction. Thus, a tensor is an abstract math-
ematical object that is represented by different
sets of numbers that depend on the particular co-
ordinate system that has been chosen; the same
tensor will be represented by different numbers
when we change the coordinate sytesm.

another. The tangent vectors transformed prop-
erly with the stretching transformation. They are
“contravariant” noncartesian tensors.

Figure 2: Normal vectors on the sphere

Figure 1: Non-Cartesian coordinates. Tangent
vectors are “contravariant” noncartesian tensors.

Noncartesian coordinates need two transforma-
tion rules, not just one. For instance, in Figure
1 we’re given a circle and its tangent vectors. If
we stretch the whole figure in the horizontal di-
rection, (this is equivalent to lengthening the hor-
izontal Cartesian basis vector so it is not a unit
vector anymore, so the coordinates are now non-
cartesian), we can see that the stretched circle
and the stretched vectors are still tangent to one

b~

Figure 3: Unlike the tangent vectors, the normal
vectors, when the figure is stretched in the hor-
izontal direction, are not the normal vectors for
the new surface!

Generalized tensor transformations (for noncar-
tesian coordinates) are locally linear transforma-
tions that come in two types: contravariant ten-
sors transform with the tangent vectors to a sur-
face embedded in the transformed space, while
covariant tensors transform with the normal vec-
tors.

Contravariant indices are generally indicated by
superscripts, while covariant indices are indicated
by subscripts. Good treatments of these conven-
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tions may be found in textbooks describing ten-
sor analysis and three-dimensional mechanics (see
[SEGEL], and [MISNER,THORNE,WHEELER]).
Generalized tensors are outside the scope of this
document.

vt

Figure 4: Normal vectors are covariant tensors;
they are transformed by the inverse transpose of
the stretching transformation matrix.

For Cartesian transformations, such as pure ro-
tation, tangent vectors transform via the same
matrix as the normal vectors; there is no differ-
ence between the covariant and contravariant rep-
resentations. Thus, subscript indices suffice for
Cartesian tensors.

A zero-th order tensor is a scalar, whose sin-
gle component is the same in all coordinate sys-
tems, while first order tensors are vectors, and
second order tensors are represented with matri-
ces. Higher order tensors arise frequently; intu-
itively, if a mathematical object is a “k-th order
Cartesian tensor,” in an N dimensional Cartesian
coordinate system, then

1. The object is an entity which “lives” in the
N dimensional Cartesian coordinate sys-
tem.

2. The object can be represented with k sub-
scripts and N* components total.

3. The numerical representation of the object
is typically different in different coordinate
systems.

4. The representations of the object obey the
Cartesian form of the transformation rule,

to obtain the numerical representations of
the same object in another coordinate sys-
tem. That rule is described in section 3.

1.1 Example 1:

For example, let us consider the component-by-
component description of the three-dimensional
matrix equation

a=b+Mc

(we utilize one underscore to indicate a vector,
two for a matrix, etc. We will occasionally use
boldface letters to indicate vectors or matrices.)

The above set of equations is actually a set of
three one-component equations, valid in any co-
ordinate system in which we choose to represent
the components of the vectors and matrices.

Using vertical column vectors, the equation is:

ag b1 mijp  miy mi3 1
ag | = by |+]| map may maj3 &)
ag b3 m3p  mgy m33 c3

which is equivalent to:
by +mqycp +mygcy +myzc3

ag = b2 +m91 1 +m99 co +mo3c3
ag = b3 +m31c1 +m39cy +m33c3

aq =

The above equations condense into three in-
stances of one equation,

3
ai:bi-i-lmic, 1 =1,2,3.
jl=

The essence of the Einstein summation notation
is to create a set of notational defaults so that the
summation sign and the range of the subscripts do
not need to be written explicitly in each expres-
sion. This notational compactness is intended to
ease the expression and manipulation of complex
equations.

With the following rules, the above example be-
comes:
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a; :bi —i—mz. C

1.2 Definition of Terms:

There are two types of subscript indices in the
above equation. The subscript “i” is free to vary
from one to three on both sides of the above equa-
tion, so it is called a free index. The free indices
must match on both sides of an equation.

The other type of subscript index in Example 1 is
the dummy subscript “7.” This subscript is tied
to the term inside the summation, and is called a
bound index. Sometimes we will place “boxes”
around the bound indices, to more readily indi-
cate that they are bound. Dummy variables can
be renamed as is convenient, as long as all in-
stances of the dummy variable name are replaced
by the new name, and the new names of the sub-
scripts do not conflict with the names of other
subscripts, or with variable names reserved for
other purposes.

1.3 The Classical Rules for the N di-
mensional Cartesian Einstein Sum-
mation Notation

We remind the reader that an algebraic term is
an algebraic entity separated from other terms
by additions or subtractions, and is composed of
a collection of multiplicative factors. Each fac-
tor may itself composed of a sum of terms. A
subexpression of a given algebraic expression is
a subtree combination of terms and/or factors of
the algebraic expression,

The classical Einstein summation convention
(without author-provided extensions) is governed
by the following rules:

Scoping Rule: Given a valid summation-
notation algebraic expression, the notation is
still valid in each of the algebraic subexpres-

sions. Thus, it is valid to re-associate sub-

expressions: If E, F, and G are valid ESN-
expressions, then you can evaluate EF and then

combine it with G or evaluate FG and then com-
bine it with E:

| EFG = (EF)G = E(FG) |

Rule 1: A subscript index variable is free to
vary from one to N if it occurs exactly once in a
term.

Rule 2: A subscript index variable is bound
to a term as the dummy index of a summation
from one to N if it occurs exactly twice in the
term. We will sometimes put boxes around bound
variables for clarity.

Rule 3: A term is syntactically wrong if it con-
tains three or more instances of the same sub-
script variable.

Rule 4: Commas in the subscript indicate that
a partial derivative is to be taken. A (free or
bound) subscript index after the comma indicates
partial derivatives with respect to the default ar-
guments of the function, (frequently spatial vari-
ables x1, x9, and x3 or whatever = y z spatial
coordinate system is being used). Partial deriva-
tives with respect to a reserved variable (say t,
the time parameter) are indicated by putting the
reserved variable after the comma.

With these rules, Example 1 becomes

a; :bi —i—mi C

The subscript “/” is a free index in each of the

terms in the above equation, because it occurs
only once in each term, while “;” is a bound in-
dex, because it appears twice in the last term.
The boxes on the bound indices are not neces-
sary; they are used just for emphasis.

At first, it is helpful to write out the interpre-
tations of some “esn” expressions in full, com-
plete with the summation signs, bound indices,
and ranges on the free indices. This procedure
can help clarify questions that arise, concerning
the legality of a particular manipulation. In this
way, you are brought back into familiar territory
to see what the notation is “really” doing.
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1.4 Why only two instances of a sub-
script index in a term?
?

bjcjdj = (b 0] Jdj = b; (c d ).

However,

3 3
ijdej # ( Z br—cr= )dj’ etc.

The first expression is a number, while the second
expression is a vector which equals a scalar (b- ¢)
times vector d. The third expression is a different
vector, which is the product of the vector b with
the scalar ¢ - d, which are not remotely equiva-
lent. Thus, we are limited to two instances of any
particular subscript index in a term in order to
retain the associative property of multiplication
in our algebraic expressions.

Unlike conventional matrix notation, Esn factors
are both commutative and associative within a
term. For beginners it is particularly important
to check Esn expressions for validity with respect
to rule 3 and the number of subscript instances
in a term.

2 A Few Esn Symbols

The Kronecker delta, or identity matrix, is rep-
resented with the symbol ¢ with subscripts for the
rows and columns of the matrix.

s _[0i#
i\ Li=

The logical “1” symbol is an extended symbol
related to the Kronecker delta.

1 ) 1, expression is true
logical expression — Y (. otherwise
Y

SOli:j :6”

The order-three permutation symbol €, is
used to manipulate cross products and three di-
mensional matrix determinants, and is defined as
follows:

0, if any pair of subscripts is equal
=< 1, (4,4,k) isan even perm. of (1,2,3)
—1, (i,7,k) is an odd perm. of (1,2,3)

€ijk

An even permutation of a list is a permutation
created using an even number of interchange op-
erations of the elements. An odd permutation
requires an odd number of interchanges. The six
permutations of (1,2,3) may be obtained with six
interchange operations of elements:

(1,2,3) — (2,1,3) — (2,3,1)

—(3,2,1) — (3,1,2) — (1,3,2).

Thus, the even permutations are (1,2,3), (2,3,1),
and (3,1,2), while the odd permutations are
(2,1,3), (3,2,1), and (1,3,2).

2.1 Preliminary simplification rules

The free-index operator of a vector, matrix or
tensor converts a conventional vector expression
into the Einstein summation form. It is indicated
by parentheses with subscripts on the right. Vec-
tors require one subscript, as in

(b); =b;

which is verbosely read as “the i-th component
of vector b (in the default Cartesian coordinate
system) is the number b sub i.”

Two subscripts are needed for matrices:

(M) = Mj; -

can be read as “the ij-th component of matrix M
in the default coordinate system is the number M
sub i j.”

To add two vectors, you add the components:
(Q—Fb)i =a; +b;

This can be read as “the i-th component of the
sum of vector a and vector b is the number a sub
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i plus b sub i.”!

To perform matrix-vector multiplications,
the second subscript of the matrix must be bound
to the index of the vector. Thus, to multiply ma-
trix M by vector b, new bound subscripts are cre-
ated, as in:

(MLD); = MZ- b

which converts to

(Mb); = Myypby +Mygby + My3b3
(Mb)g = Mgyby + Mggby + My3b3
(Mb)g = Mgyby + M3gby + M3gb3

To perform matrix-matrix multiplications,
the second subscript of the first matrix must be
bound to the first subscript of the second matrix.
Thus, to multiply matrix A by matrix B, you cre-
ate indices like:

(4 B);; = Ai Bj

which converts to:

(AB)11 = Aj1 By +A19B91 +A13 B3
(AB)a1 = A9y Byp + A9 Bop + A9z B3y
(AB)s1 = Agy Byp + Agg Boy + A3z B3
(AB)12 = Aq1B1g +A19 Bog + A13 B39
(AB)22 = A9y Byg + Agg By + A93 B3y
(AB)ss = Ag31 B1g + Agg Bog + A33 B39
(AB)1s = Aq1B13 +Aj9Bog + Ay3 B33
(AB)2s = A9y By3z + Agg Bog + A9z B33
(AB)ss = A3y By3 + Agg Bog + A33 B33

'In the esn C preprocessor, the default ranges are dif-

ferent:
#{ c_i =a_i + b_i

} (assuming the arrays have been declared over the

same range). In C, this expands to:

c[0] = al0] + bl[o0];
cl[1] = al1]l + bl[1];
cl[2] = al[2] + b[2];

2.1.1 Rules involving €ijk and 6ij

The delta rule

When a Kronecker delta subscript is bound in a
term, the expression simplifies by

(1) eliminating the Kronecker delta symbol, and

(2) replacing the bound subscript in the rest of
the term by the other subscript of the Kronecker
delta. For instance,

becomes
vik = My,
and
v = 045 4 Mjk
becomes

UL :a Mk

or equivalently, a; M;;.. Note that in standard
notation,
T
v, = (M Q)k.

Rules for the order-N permutation symbol

Interchanges of subscripts flip the sign of the per-
mutation symbol:

6i1i2 ZN :_eiQil ZN

Repeated indices eliminate the permutation sym-
bol (since lists with repeated elements are not
permutations).
€iijk...0 =0

This is related to the behavior of determinants,
where interchanges of columns change the sign, or
repeated columns send the determinant to zero.
Note repeat of index 1.

The order-three permutation symbol sub-
script rule

For the special case of an order-three permutation
symbol, the following identity holds.
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€ -

ijk — ¢

Jke

The order-3 epsilon-delta rule

The order-3 e-6 rule allows the following subscript
simplification (when the first subscript of two per-
mutation symbols match:

Ejk qu - 6jp 6kq N 6jq 6kp

In other words, the combination of two permu-
tation symbols with the same first subscript is
equal to an expression involving Kronecker deltas
and the four free indices j, p, k, and ¢. In prac-
tice, the subscripts in the permutation symbols
are permuted via the above relations, in order to
apply the e-6 rule.

A deriviation to verify the identity is provided in
Appendix A.

3 Transformation Rules for

Cartesian Tensors

We express vectors, matrices, and other tensors
in different Cartesian coordinate systems, with-
out changing which tensor we are representing.
The numerical representation (of the same ten-
sors) will generally be different, in the different
coordinate systems.

We now derive the transformation rules for Carte-
sian tensors in the Einstein summation notation,
to change the representation from one Cartesian
coordinate system to another. Some people in
fact use these transformation rules as the defi-
nition of a Cartesian tensor — any mathemtaical
object whose representation transforms like the
Cartesian tensors do is a Cartesian tensor.

Consider a three dimensional space, with right-
handed? orthonormal® basis vectors le, e, and

2The author strongly recommends avoiding the com-
puter graphics convention of left handed coordinates, and
recommends performing all physically based and geomet-
ric calculations in right handed coordinates. That way,
you can use the last 300 years of mathematics texts as
references.

3mutually perpendicular unit vectors

3e. In other words, each basis vector has unit

length, is perpendicular to the other basis vectors,
and the 3D vectors are named subject to the right
hand rule.

Right handed unit basis vectors satisify:

1 2 3

e x Ze=73e,
e x %e="le, and
B¢ x le=2¢

In addition, we note that

e le=46;5.
This result occurs because the dot products of
perpendicular vectors is zero, and the dot prod-
ucts of identical unit vectors is 1.

We also consider another set of right-handed or-
thonormal basis vectors for the same three dimen-
sional space, indicated with “hats,” vectors 'é,
2¢, and 3¢, which will also have the same proper-

ties.

|

. ]ézéij,etc.

3.1 Transformations of vectors

Consider a vector a, and express it with respect
to both bases, with the (vertical column) array of
numbers a1, asg,as in one coordinate system, and
with the array of different numbers a1, ao, ds in
the other. )
vector a = aj lg—l—aQ 2Q+a3 3¢ = a;'e

and also for the same vector,

a=a 1§+d2 2é+&33

Lt
4

é=a
Since the two expressions represent the same vec-
tor, they are equal:

K

— G e
jle=a;'¢e

@ 1

(sum over i)

We derive the relation between a; and a; , by dot-
ting both sides of the above equation with basis
vector kg.

Thus, by commuting and reassociating, and the
fact that the unit basis vectors are mutually per-
pendicular, we obtain:
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a; (lg kﬁ):&z(ié'k@a or
a; ;. :dl(ié-kg)7 or
_ (k i\ A
ap, = ("e- 'é) a;

The above expression, in conventional notation,
becomes:

N

ap =) (‘e 'e) 4
7

ag =) (Pe- ') 4
7

a3 = (*e-'¢) 4;
i=1

Thus, a matrix T re-expresses the numerical rep-
resentation of a vector relative to a new basis via

a; :Tij dj
where
Tij = (iQ' jé)

Note that the transpose of T is its inverse, and
det T'=1, so T is a rotation matrix.

3.2 Transformations of matrices

The nine basis vectors of (3 dimensional) matrices
(2nd order tensors) are given by the nine outer
products of the previous basis vectors:

ke — kele.

The above matrix equation uses “dyadic” nota-
tion for the outer product of the two basis vectors
ke and fe. The outer product of two vectors is a
matrix, whose ¢ — j-th component is given by:

(@ b)j; =a;b;
Thus, the nine quantities which form the nine di-
mensional basis “vectors” of a three-by-three ma-
trix are the outer products of the original basis
vectors:

By dotting twice by Pe and ?¢, a similar derivation
shows us that the transformation rule for a matrix
is:

Mpq

Mij =Tip Tjq

For instance, with the standard bases, where

1
le=1| 0|,
0
0
2@ = 1 )
etc., note that
1 0 0
lele = 00 |,
0 0 0
0 1 0
tele=] 000 |,
0 0 0

etc.

3.3 Transformations of N-th order

Tensors

You would not be surprised then, to imagine basis
vectors of 3rd order tensors as being given by

”kﬁzlgjg lcg

with a transformation rule (from hatted coordi-
nates to unhatted)

Aijr = Tip) (Tjq) (Thy) Apgr

Also, not surprisingly, given an N order tensor
quantity X, it will have analogous basis vectors
and will transform with NV copies of the 7" matrix,
via:

b — (1

119 zN

N




Barr, Extending the Einstein Summation Notation, 2.05 9

4 Axis-Angle Representations
of 3D Rotation

One very useful application of Esn is in the repre-
sentation and manipulation of rotations. In three
dimensions, rotation can take place only around
one vector axis.

4.1 The Projection Operator

The first operator needed to derive the axis-angle
matrix formulation is the projection operator. To
project out vector b from vector a, let

a\b=a—-ab

such that the result is perpendicular to b.

The projection operation “a \ b” can be read as
vector a “without” vector b. Note that

/\

Rot ( B)

Rot ( A) D

Figure 5. Visual demonstration that rotation is
a linear operator. Just rotate the document and
observe that the relationship holds: Rot(A+B) =
Rot(A) 4+ Rot(B) no matter which rotation oper-
ates on the vectors.

4.2 Rotation is a Linear Operator

We will be exploiting linearity properties for the
derivation:

Rot(a + b) = Rot(a) + Rot(b)

and

Rot(o a) = o Rot(a).
See Figure 5.

/\

e2

Rot (€2) = -sin,\cos Rot (el) = cos, sin

e

Figure 6. Two-d rotation of basis vectors 'e and
¢ by angle 6 are displayed. Rot(le) = cosf te +
sinf 2e, while Rot(’e) = —sinf e + cosf 2e.

4.3 Two-D Rotation.

Two dimensional rotation is easily derived, using
linearity. We express the vector in terms of its
basis vector components, and then apply the ro-
tation operator.

Since

Therefore
Rot(a) = Rot(aq ‘e + as 2e).

Using linearity,
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Rot(a) = aq Rot('e) + ay Rot(*e)
From Figure 6 we can see that that

Rot(lg) = cosO'e + sinh’e

and

Rot(Qg) = —sinf'e + cos .

Thus,

Rot(a) = (cosf ay —sinf ay)

1
e
+ (sinf aj +cosf ay) %e

Rot (a\r)

Figure 7. The rotation is around unit vector axis
r, by right handed angle 6. Note that the vectors
r,a\r and r x @ form an orthogonal triple.

4.4 An Orthogonal triple

Given a unit vector r around which the rotation
will take place (the axis) we can make three or-
thogonal basis vectors.

Let the third basis vector, 3¢ = r.

Let the first basis vector, 'e, be the unit vector
in the direction of @ \ .

Note that by the definition of projection, 3e is

perpendicular to le.

Finally, let e9 = e3 x 1. It’s in the direction of
r X (a\ r) which is in the same direction as r X a.

Note that

e x e =7,
’ex 3¢ ="e, and
Be x Lo = 2,

We have a right-handed system of basis vectors.
4.5 Deriving the axis-angle formula-
tion

First, note that rotation of vectors parallel to r
around itself remain unchanged.

We're now ready to derive Rot(a) around r by 6.

By definition,

a=a\r+ar
Thus,

Rot(a) = Rot(a\ 1+« r)
= Rot(a\ 1) + Rot(ar)
= Rot(la\ 1| &)+ ar
=la\z| Rot('e) +ar

=la\r| (cos® le 4+ sinf e)+ar

=t

=cosf (a\r)+sinb (rxa)+(a-r)

4.6 Deriving the components of the ro-
tation matrix

Since rotation is a linear operator, we represent
it with a matrix, R.

Using Esn, we can easily factor out the compo-
nents of the matrix, to obtain its components:
from the previous equation, we know the i-th
component of both sides of the equation is given
by:

(Rot(a)); = (R a); = (cos® (a\1)+sinb (rxa)+(a-
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Thus,

RZ] aj = cosf (Q\f)z + sinf (£><Q)Z- —|—(Q~£) T

20050(6”- —TiTj )aj + sin @ €ikjTEROj TajTiTy

Note that each term has a; in it. We put every-
thing on one side of the equation, and factor out
the aj on the right.

(_Rij + cos 6 (5” -7 Tj ) + sinf eikj Tk + Tj T ) aj
Unfortunately, we can’t divide out the a;
because j is involved in a sum, from 1 to 3. How-
ever, since the above equation is true for all val-
ues of aj then the esn factor on the left must be

term,

zero. (For instance, we could let aj = 61j , 62j
and 63 in sequence.)
Thus, putting Rij to the other side of the equa-

tion, the ¢jth components of the rotation matrix
are given by:

Rj; = cost (6

You can reverse the sign of the permutation sym-
bol to get:

ij —Tz'Tj)—l-Sin@ eikj Tl —l—?“j r;

R;; =cosf (6;

ij jj —riTj)—sinf €GjkTE T

5 Summary of Manipulation
Identities

In this section, a series of algebraic identities are
listed with potential applications in multidimen-
sional mathematical modeling.

List of Einstein Summation Identities:

(1) The free-index operator of a vector, matrix
or tensor converts a conventional vector expres-
sion into the Einstein form. It is indicated by

parentheses with subscripts, requiring one sub-

script for vectors, as in ( b ); = b;, and two
subscripts for matrices, as in ( M )ij = M;;.

You can think of (); as an operator which dots
the argument by the ¢-th basis vector.

Sometimes we will use the free index operator to
select column vectors of a matrix, such as the
following:

0
In this case le is the first column vector of the

matrix F, 2¢ is the second column, etc. *

(2) The dot product of two vectors a and b is
expressed via: a-b=a;b; = a. .

(2a) The outer product of two vectors a and b
is expressed via: (a b)ZJ =a;b;.

(3) In 3-D the vector cross product of two vec-
tors a and b is expressed via:

(Qxb)i = Eijk aj bk7

or, putting boxes on the matching sets,

@ E E

or
(@xb)y =agbz —agzby
(@ X b =agby —ayby

(@ xb)z =a3by —agby
(in which the free index of the output cross prod-
uct vector becomes the first subscript of the per-
mutation symbol, while two new bound indices
are created).

(4) 0 7 5]k

*Note that ‘e # (e);. The right hand side is an i-th

scalar, while the left side is an i-th vector.
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5) 6;; =6 = 3 in three dimensional space.
( ) 21 p

6;; = N in N dimensional spaces.

(6) 52, 52, =0;; = N.
(7) €k = —¢€jik -

(9) The e-6 rule allows the following subscript
simplification:

ij qu - 6jp 6kq o éjq (skp

(10) If Sij is Symmetric, i.e., if S
then

ij = Sji

€qij ij =0
(11) If Aij is Antisymmetric, i.e., if Az'j =
—Aj;, then A;; — Ay = 24;5 . In addition,
since Mij — Mji is always antisymmetric,
eqij (Mij — Mj;) = 2eq5 M
(12) Partial derivatives are taken with respect

to the default argument variables when the sub-
script index follows a comma:

For example, given a scalar function F' of vector
argument z, the i-th component of the gradient
of F is expressed as:

oF
VF), =F;, = —.
( )7/ y VA axl
Given a vector function F of vector argument gz,
the the derivative of the i-th component of F(x)
with respect to the j-th component of x is ex-
pressed as:

OF;
F;, . = —L,
4 3:82'

Argument evaluation takes place after the partial
derivative evaluation:

OF; ()
F. . — L=
(z) 8aj

a =2
(13) T j = 6ijv where z is the default spatial
coordinate vector.

(14) Sometimes partial derivatives may also be
taken with respect to reserved symbols, set aside
in advance.

OF
Fy=2
T o
(15) (V2E); = F; j;

(16) The determinant of an NxN matrix M may
be expressed via:

detM = ¢;) iy i M1ig Maiy - Myiy

The order N cross product, is produced by leav-
ing out one of the column vectors in the above
expression, to produce a vector perpendicular to
N —1 other vectors.

For three-by-three matrices,

det(M) = 55, My Moj Mgy, = €51 My Mjp Mg

2

(17) Another identity involving the determinant:
€qnp det(%) = eijk Mqi Mn] Mpk

(18) The first column of a matrix M is designated
M;q , while the second and third columns are in-
dicated by M;9 and M;3. The three rows of a
three dimensional matrix are indicated by My;,

M2i y and M3i .

(19) The transpose operator is achieved by
switching subscripts:

T
(M) = Mj; -

(20) A matrix times its inverse is the identity ma-
trix:
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—1 _ <.
Mi (% )k_ézk.

(21) The SinAxis operator. The instantaneous
rotation axis r and counter-clockwise angle of
rotation 6 of a three by three rotation matrix R
is governed by the following relation (a minus sign
is necessary for the left-handed version):

. . . 1
(SinAxis(R)); = r; sinf = S€ijk Ry

This identity seems easier to derive through the
“esn” form than through the matrix notation
form of the identity. It expands to

r1 sinf = 1/2(R39 — Ro3)
r9 sinf =1/2(R13 — R31)
rg sinf =1/2(Ry1 — Ry2)

(22) The three by three right-handed rotation
matrix R corresponding to the instantaneous
unit rotation axis r and counter-clockwise angle
of rotation # is given by:

Rj; =rirj +cosf(b;; —r;rj)—sinf €ijk Tk

Expanded, the above relation becomes:

Mll = Tl Tl -I—COS@(l—Tl Tl)
M9y = rory —cosfrgry +r3 sind
Ms3q rgry —cosfrgry —ro sind
Myy = ryrg —cosfriry —rgsind
Moy = rorg +cosb(l—r9ry)
M3y = r3r9 —cosfrgry +rq sinf
My3 = ryrg —cosfryry +ro sinf
Ms3 = r9org —cosfrorg —rq sind
Ms3 = r3rg +cosf(l—r37r3)

Relation 22 yields a right-handed rotation around
the axis r by angle 6. It can be verified by multi-
plying by vector a; and comparing the result to
the axis-angle formula in section 4.5.

(22a) The axis-axis representation of a rotation
rotates unit vector axis @ to unit vector axis b by
setting

IS
X
|

=
I
I}
X
=

and letting
0 = cos *(a; b;)
(23) The inverse of a rotation matrix R is its

transpose:

ie.,

(24) When R is a rotation matrix, Ry; Rkj =

(25a) The matrix inverse® of a general N by N
matrix M:

M.

(Mﬁl)" :Eii2i3...iN 6]]2]3]]\[ Z2j2
Jv (N —1)! detM

Please note that the numerator of the above ex-
pression involves an enormous number of individ-
ual components when written out in a conven-
tional form. The above expression exhibits an
incredible economy.

(25b) The three by three matrix inverse is
given by:
€k qup My, M),

2det M

The algebraically simplified terms of the above

®The author hesitates to expand this daunting expres-
sion out!
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expression are given by:

(M™11 = (Msg Map — Moz Mgy )/ det M
(M7 )o1 = (Mpg Mgy — Mg Myy )/ det M
(M ")31 = (Mgg Moy — Moo M3y )/det M
(M1p = (My3 M3y — Mgz Myg)/ det M
(M7 )ap = (MggMyy — Myg My )/ det M
(M ")z = (Mg Mgy — Mgg Myq)/det M
(M13 = (Mag Myp — Myz Mag)/ det M
(M 1)23 = (M3 Mgy — Mgz Myy)/det M
(M ")33 = (Mgg My — Mg Msy)/det M

(The factor of 2 canceled out.)

To verify the above relationship, we can perform
the following computation:

bqr = (M 'M)gr = (M)

Thus, the above terms simplify to:

qi M;).

~€ijk eqnp My My, eqnp (€55 Myp My My
i 2det M N 2det M
From identity 17, the determinant cancels out and
the above simplifies to:

Eqnp €rnp
2

which, by the epsilon-delta rule, becomes

Epgn €prn 5qr onn — 5qn onr
2 B 2
B 2
which verifies the relation.

= Sqr

(26) From the preceding result, we can see that
in 3 dimensions:

—1
EijijTMkS :2detM(M )qi €qrs -

(27) The Multidimensional Chain Rule in-
cludes the effects of the summations automati-
cally. Additional subscript indices are created as
necessary. For instance,

(E(Ge(t).s = Fi,j (@Qat)E , (2(D)ey .

)

This is equivalent to

j=1k=1
where
_ 9F; (@)
77005y _ (st
and
0G;(9)
Ik = 9By ‘QZE(t)

(28) Multidimensional Taylor Series:

Fi(z) = Fj(zg) + Fj j (2o )(xj —xg5)
1

+op Fi gk (o )@ — o) (x —xop)

1
o Fijrp (20)(xj —205 )@y, —wop )(@p —2gp )+ -

(29) Multidimensional Newton’s Method
can be derived from the linear terms of the multi-
dimensional Taylor series, in which we are solving
F(z) =0, and letting Jij = Fi,j :

vy =w0j = (L) Fi (p)-

(30) Orthogonal Decomposition of a vector v
in terms of orthonormal (orthogonal unit) vectors

le, %e, and 3¢

v=(v-"¢e)e.

(31) Change of Basis: we want to express v; /¢
in terms of new components times orthonormal
basis vectors 7é¢. A matrix T re-expresses the
numerical representation of a vector relative to
the new basis via

where
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(32) The delta rule:

61] esn—ezpresszoni = esn—expresszonj .

(33) The generalized stokes theorem:

/ n; esn-expression; d o = / €SN-eTPression;
OR R

Likewise,

/ n; esn-expression; d o = / esn-expression; ; dv
OR R ’

(34) Multiplying by matrix inverse: if
Mz'j ri = esn-eTpression;
then

(Mﬁl)pi Mz] J?] = (Mfl

or, simplifying and renaming p back to j,

eSN-exPression;

)pi (3

T = (M’l)ji esn-eTpression;

Note the transpose relationship of matrices M
and ﬁ(_l) in the first and last equations.

(35) Conversion of Rotation matrix R;; to
the axis-angle formulation:

We first note that any collection of continuously
varying axes r and angles 6 produces a continuous
rotation matrix function, via identity 22. How-
ever, it is not true that this relation is completely
invertible, due to an ambiguity of sign: the same
matrix is produced by different axis-angle pairs.
For instance, the matrix produced by r and @ is
the same matrix produced by —r and —6. In fact,
if # = 0 then there is no net rotation, and any
unit vector r produces the identity matrix (null
rotation).

Since

€k Rij |

, and
2

|sin | =

0]

Rii -1

0 =
COS 5

the angle 6 is given by
0 = Atan(|sinf|, cos 0).
If 8 = 0, any axis suffices, and we are finished.

Otherwise, if # # 0, we need to know the value of
r. In that case, if 0 # m, then

d’U _Eijk RZ]

T =
k 2sinf '
Otherwise, if # = m, then since the original rota-
tion matrix

Rij =2rjr; =6

17
then
_ Ry 40
Ty = 5
Letting
R;; +6i;
J t)
Mz] = f,

we can solve for r;, by taking the ratio of non-
diagonal and square roots of nonzero diagonal
terms, via

M)

Note that we are using [j] to be an independent
index as defined near the bottom of page 3. We
choose the value of j to be such that M[JH]] is
its largest value.

6 Extensions to the tensor no-
tation for Multi-component
equations

In this section, we introduce the no-sum notation
and special symbols for quaternions.
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6.1 The “no-sum” operator

The classical summation convention is incomplete
as it usually stands, in the sense that not all
multi-component equations (i.e, those involving
summation signs and subscripted variables) can
be represented. In the scalar convention, the de-
fault is not to sum indices, so that summation
signs must be written explicitly if they are de-
sired. Using the classical summation convention,
summation is the default, and there is no con-
venient way not to sum over a repeated index
(other than perhaps an awkward comment in the
margin, directing the reader that the equation is
written with no implicit summation).

Thus, an extension of the notation is proposed
in which an explicit “no-sum” or “free-index” op-
erator prevents the summation over a particular
index within a term. The no-sum operator is rep-
resented via Y, or (which is easier to write) a
subscripted prefix parenthesis (; ). This modi-
fication extends the types of formulations we can
represent, and augments algebraic manipulative
skills. Expressions involving the no-sum operator
are found in calculations which take place in a
particular coordinate system; without the exten-
sion, all of the terms are tensors, and transform
correctly from one coordinate system to another.
For instance, a diagonal matrix

aq 0 0

I<
Il
o

S
o

0 0 a3

is not diagonal in all coordinate systems.
Nonetheless, it can be convenient to do the cal-
culation in the coordinate system in which M is
diagonal.

Mij = Y (a;8;5) = (; a;d;5)
i
Some of the identities for this augmented notation
are found later in this document.

The ease of manipulation and the compactness
of representation are the main advantages of the
summation convention. Generally, an expression
is converted from conventional matrix and vector
notation into the summation notation, simplified
in the summation form, and then converted back

into matrix and vector notation for interpreta-
tion. Sometimes, however, there is no convenient
way to express the result in conventional matrix
notation.

6.2 Quaternions

The other proposed extensions to the notation aid
in manipulating quaternions. For convenience,
a few new special symbols are defined to take
quaternion inverses, quaternion products, prod-
ucts of quaternions and vectors, and conversions
of quaternions to rotation matrices. A few iden-
tities involving these symbols are also presented
in this section.

6.2.1 Properties of Quaternions

A quaternion is a four dimensional mathematical
object which is a linear combination of four inde-
pendent basis vectors: 1, i, j, and k, satisfying
the following relations:

i2:j2:k2 = -1
ijk = -1

By pre- and post-multiplying by any of i, j, or k,
it is straightforward to show that

ij = k
jk = i
ki = j
jbi = -k
ki = —i
ik = —j

Thus, a quaternion

70
71
q2
a3

B
Il

can represented as

g=4q0 ta1itaitak
and quaternion multiplication takes place by ap-
plying the above identities, to obtain
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= polegg + i+ qi+ask)
+p1ilep + q1i+g2j +a3k)
+p2i(ep +@1i+a2i+aq3k)
+p3k(gy +q1i+g2j+a3k)
= pogqo +poa1itroga2i+ppask
+p1igy + p1 g1 (i) + p1 92 (i) + p1 g3 (ik)
+p2iag + p2 q1 (§i) +p2 92 (3j) + p2 93 (k)
+p3 kg +p3q1 (ki) +p3 g2 (kj) + p3 ¢3 (kk)
= podo —P191P292 — P33
+i(prag +roa1 +p2493 —P392)
+i(p2ap +poa2 +p391 —Pp143)
+k(p3qp +poa3 +r192 —P2401)

6.2.2 The geometric interpretation of a
quaternion

A quaternion can be represented as a 4-D com-
posite vector, consisting of a scalar part s and a
three dimensional vector portion v:

(1)

A quaternion is intimately related to the axis-

angle representation for a three dimensional rota-

tion (see Figure 1). The vector portion v of a unit

quaternion is the rotation axis, scaled by the sine

of half of the rotation angle. The scalar portion,

s is the cosine of half the rotation angle.
cos(6/2)

4= ( sin(0/2)r ) ’

where r is a unit vector, and ¢- ¢ =1

Thus, the conversion of a unit quaternion to and
from a rotation matrix can be derived using the
axis-angle formulas 22 and 35. Remember that
the quaternion angle is half of the axis-angle an-
gle.

Quaternion Product:

A more compact form for quaternion multiplica-

()02 )-(

51up + 8901 +U1 Xy

(pg +p1i+p2i+p3k)(qp +q1i+a2j+aq3k)

sy —v1 -2y )

17

Note that

()2 )()

With this notation, quaternion-vector, vector-
quaternion, and vector-vector multiplication rules
become clear: to represent a vector, we set the
scalar part of the quaternion to zero, and use the
above relation to perform the multiplications.

Quaternion Inverse:

The inverse of a quaternion ¢ is another quater-
nion gfl such that ¢ gfl = 1. It is easily verified
that

= ( _SQ>/(82+Q-Q)-

Rotating a vector with quaternions is achieved by
pre-multiplying the vector with the quaternion,
and postmultiplying by the quaternion inverse.
We use this property to derive the conversion for-
mula from quaternions to rotation matrices.

Quaternion Rotation:

(Rot(v)); = (qug');,i=1,2,3.
With this identity, it is possible to verify the ge-
ometric interpretation of quaternions and their
relationship to the axis-angle formulation for ro-
tation.

The most straightforward way to verify this re-
lation is to expand the vector v into components
parallel to r and those perpendicular to it, plug
into the rotation formula, and compare to the
equation in section 4.5.

i.e., to evaluate

(Rot(v)) = (q((v \7) +ar)g™)

6.3 Extended Symbols for Quaternion
Manipulations

The author has developed a few special symbols
to help write and manipulate quaternion quanti-
ties more conveniently. We define all quaternion
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components as going from 0 to 3, with the vec-
tor part still going from 1 to 3, with zero for the
scalar component.

If we are not using the full range of a variable
(going, say from 1 to 3 when the original goes
from 0 to 3), we need to explicitly denote that.

We hereby extend our Kronecker delta to allow
zero in the subscripts, so

bpp =1
and
6p; =0, 1#0.
We create a new permutation symbol, €® which
allows zero in the subscripts. It will be +1 for
even permutations of (0,1,...,3), and —1 for odd
permutations.

The quaternion inverter structure constant Vij
allows us to compute quaternion inverses:

" = v 4 /(e ax)-

where

1,i=35=0
Vij = —1,i=35#0
0, otherwise

Note, using the full range for i and j, that

Vij = 2620 5]'0 — 6Z] .
The quaternion product structure constant
allows us to multiply two quaternions p and

Riij
q via
(Iﬂ)K

where the nonzero x components are given by: (i,
jhk=1...3)

= Kyij i dj

koo = 1

Kijo = Oij
Kok = Ok
Kok = Ok
Kijk = €ijk

Note, using the full range, for i, j, and k that

_ 0
Kijk = 0ij 0k0 Ok 950 — %0 65k + €ijk

The quaternion-vector product structure con-
stant k"p;p allows us to multiply a quaternion ¢
and a vector v via

(qu) = K" i @ ve

where the nonzero k” components are given by:
(i,j, k=1...3)

Fiok = i
KY0jk = Ok
Kk = €ijk

Note, using the full range for i, j, and k, that

v

_ 0
Kk = 0ik 00 — 8i0 05k + €g;jk

The vector-quaternion product structure con-
stant “rpp; allows us to multiply a vector v and
a quaternion ¢ via

W@ ="Kpeive i

where the nonzero “x components are given by:
(i,j, k=1...3)

“Rijo = 0
,Uli . — .
v()]k 7k
Kijk = €ijk

Note, using the full range for i, j, and k that

v _ 0
Rijk = 0ij Ok0 — 90 95k + €0ijk

The vector-vector product is the conventional
cross product.

The quaternion to rotation matrix structure
constant Hijkl allows us to create a rotation® ma-
trix R

Rij = pyjke a5 90 /(v aw )-

It is straightforward to express p in terms of the
K’s:

5Note that qN 4N = q- q in the following equation.
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Hijkt = ®ikp Fpjn Vnt

To derive this relation, we note that the i-th com-
ponent of the rotation of vector a is given by: (i,
jhyk=1...3)

(Rot(g))i = (qaq_l)i ,1=1,2,3.
= Kikp G (aq Hp
= Bikp U Fpjn tj (0w
= Kikp U Fpin 05 Yy /(@ 0)
= (Bikp "Bpjn Vnt) G 10 /(0- Da;

Since we can represent these rotations with a
three dimensional rotation matrix R, and

(Rot(a)); = R;ja;
for all a;, we can eliminate a; from both sides
of the equation, yielding

Rij = Kipp "Fpjn Vnt U 90 /(4 - 9)-
Thus,

Hijkt = Rikp FpjnVal-

7 What is Angular Velocity in
3 and greater dimensions?

Using the axis/angle representation of rotation,
matrices, and quaternions, we define, derive, in-
terpret and demonstrate the compatibility be-
tween the two main classic equations relating the
angular velocity vector w, the rotation itself, and
the derivative of the rotation.

Matrix Eqn:
m'=wxm
or
m' =w' m
where
Wik = €ijkws

Quaternion Eqn:

Definition of angular velocity in three
dimensions

Consider a time varying rotation Rot(¢), (for in-
stance, represented with a matrix function or
quaternion function), which brings an object from
body coordinates to world coordinates.

In three dimensions, we define angular velocity w
as the vector quantity

1. whose direction is the instantaneous unit
vector axis of rotation of the time varying
rotation and

2. whose magnitude is the angular rate of ro-
tation around the instantaneous axis.

We derive angular velocity both for matrix repre-
sentations and for quaternion representations of
rotation.

The direction of the instantaneous axis of rota-
tion can be obtained by using a matrix-to-axis
operator on the the relative rotation from t to
t+ h.

In symbolic form, angular velocity is given by

. Axis(RelRot(t,n)) Angle(RelRot(t,h))
h

w = limy_.,

for either representation method.

Matrix representation

Let M (t) be a time varying rotation matrix which
takes us from body coordinates to world coordi-
nates, and let N(t, h) be the relative rotation from
M(t) to M(t+h).

In other words, since N takes us from M(t) to
M(t+h),

M{(t+h) = N(t,h) M(t)
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RelRot(t,h) = N(t, h)
N(t,h) = M(t+h) M'(t)
Nij (t,h) = M p (t+h) (MT); (1)
N (h) = My (t+h) My, (8
= (sz()+th< +0(h?)) M;
NZ] (t,h) = (52] —i—th{p (t) Mjp (t) +O(h2)

Expressing w in terms of M and M’

To find w, we can convert N(¢,h) to axis/angle
form, to find the direction of the axis and the
angular rate of rotation, and take the limit as h
goes to zero.

N(t,h)) Angle(N(t,h))
h

However, a simpler method is available. We note
that as h — 0, Angle(N) — sin(Angle(N)). Thus,
the product of the matrix Axis operator and the
Angle operator in the limit will equal the matrix
SinAxis operator (which is easier to compute).

. SinAxis(N(t, h))

w = lim =
h—0 h

w; = < lim Pyl Mg (1. 1)

4 2 h—0 h

= § limeyg; (6pg +1h (t) Mys (t))
Thus,
wi = %Eipq M (t) Mgs (t)

Note that the SinAxis operator is described in
identity 21; also note that

_ !
“ul = My e Mii+2gs)
or B , M
wp = 2535
!
wy = M33Mls
!
wg = M13M28

Expressing M and M’ in terms of w

We can express M (t) Mgs (t) in terms of w by

multiplying both 81des by €k -

wj % quj M}’)S (t) M(IS (t)
p Wijkwj = 3 €ijkpgj Mps () Mgs ()
= % (6 6kq —5jq5kp) Mps (t) qu (t)
= 3 (MI () My (8) = Mllcs (t) Mjs ()
kY = M' (6 My (0

Expressing M’ in terms of w and M

We take the equation in the previous section, and
multiply by Mkp :

Mkpeijkwj M}S (t) Mks (t)Mkp
Mypeijrwj = My, (1)
SO
! .. .
Mjp (8 = €ijk wj My

Thus, we have derived the matrix equation pre-
sented in the introduction.

Quaternion representation

Let ¢(t) be a time varying rotation quaternion
which takes us from body coordinates to world
coordinates, and let p(t,) be the relative rota-
tion from q(t) to q(t+h).

In other words, since p takes us from q(t) to
q(t-+h),

q(t+h)=p(t,h) q(t)
» RelRot(t,h) = p(t,h)
p(t,h) = p(t+h)p ')

Expressing w in terms of q and q’

To find w, we can convert p(t,h) to axis/angle
form, to find the direction of the axis and the
angular rate of rotation, and take the limit as h
goes to zero.
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Axis(p(t,h)) Angle(p(t,h))
h

w = limp_.g

However, as in the case with the matrices, a sim-
pler method is available. We note that as h — 0,
Angle(N) — sin(Angle(N)). Thus, as before, the
product of the matrix Axis operator and the An-
gle operator in the limit will equal twice the
quaternion VectorPart operator which returns the
vector portion of the quaternion.”

. VectorPart(p(t, h))
2 ’lllrr%) =

h,
-1
— 2limy,_g VectorParfE(g(Hh)q )

= 2VectorPart(1 + ¢'(t)g ')

SO

Expressing q’ in terms of w and q

We take the equation in the previous section, and
multiply by %q on the right:

Thus, we have derived the quaternion equation
presented in the introduction.

Relating angular velocity to rotational ba-
sis vectors

Let basis vector Pe be the p-th column of M, so
the i-th element of the p-th basis vector is given
by

(Pe); = Mi)p

Thus,
(€p)i =€jrwj (P

or
[ . p
€p = wj X e

"The VectorPart operator can be thought of as a Half-
SinAxis operator on the unit quaternion.

What about non-unit quaternions?

Let @ = mgq be a non-unit quaternion (with mag-
nitude m, and ¢ is a unit quaternion).

Q" = (mg)

mg' +m'q

= miwq+qd/dt(Q- Q)"

lwQ +Q/(Q - Q)V?d/dt(Q - Q)V/?
= lwQ+Q-QQ/Q-Q

So

(I - QQ)Q" = 3wQ

or
Q =4I+ (19739))0}@
Alternate derivation of w (works in N

dimensions)

Let M(t) be an N dimensional rotation matrix
which brings an object from body coordinates to
world coordinates.

Note that

My, My, = o

Taking the derivative of both sides,

MIZann +MinMIkn =0
which means
M, My, =M MY, = Ajpe

— Ak
Thus,
M, My, = Aj,
To solve for M', multiply both sides by Mkj .
So
M; = A, My

In N dimensions, the antisymmetric matrix A
takes the place of the angular velocity vector w.
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8 Examples.

Example 1. To simplify the vector a x
( b x c) we use the re-association rules, the re-
arrangement rules, the permutation symbol sub-
script interchange rules, the e-0 rule, the § sim-
plification rules, and the re-association and rear-

rangement rules:
Ei a (b X c

(ax(bxg); =
eijk aj eknp bn Cp
= (ewk Eknp )aj bn Cp

= (Ekm Eknp) 'anp
= (% 5]2, 5”, bip )a
b ¢j b] c;

T (]b])ci

]bn Cp

(aj ¢ )b
Therefore a x (bxc) = (a-c)b—
X (bxc)#(axb)xc

Example 2. The equation ¢ = a; b; has two re-
peated subscripts in the term on the right, so the
index “¢” is bound to that term with an implicit
summation. This is a scalar equation because
there are no free indices on either side of the equa-
tion. In other words, ¢ = a1 by +a9 by +agzbgy =
a-b

(a-b)c. Note that

Example 3. To show that a-(bxc) =
det(a, b, c)
a-(bxe) = a;(bxc);
= a6 b5 ¢
= €5k 9 bj ok
= det(a,b,c)
€k aibjcr = (6r a4 bj )i,
(Ekw ibj )i,
= (a X b)k Ck
(@ x

(aXb)'Q =

Example 4. To derive identity (21) from iden-
tity (22), we multiply (22) by €qji:

eqji Bij = eqji (rirj +cg (5 —rirj))veqjisg €ikj Tk -

The second factor of the first term on the right
side of the above equation is symmetric in sub-

scripts “2” and “7,” so by the symmetric identity
(10), the term is zero. So,

qui sz = qui Eikj sin 6 Tk .
Since
(€gji €ikj ) = €igj €ik;
= 8k 055 = 0gj Ok = 30gk — gl = 20gk;
qui sz = 26qk sin 0 Tk
and

€qji Rz’j = 2sinf rq
which completes the derivation.
Example 5. To verify the matrix inverse iden-

tity (25), we multiply by the original matrix M;,,
on both sides, to see if we really have an identity.

(MY, M, = 1 M €551 €qnp Mjp My, ‘
= Jqrrum 2 det M
s 2 Leanp (Cijp Min Mjn My )
m = 2 det M
Using identity (17), this simplifies to

? 1 (anp Emnp ) det M
2 det M

(Sqm =

SO

1
5(25qm )
Thus, the identity is verified.

(sqm ==

Example 6. To verify identity (26), we multiply
by the determinant, and by egrs. Identity (11)
is used to eliminate the factor of 2. The other
details are left to the reader.

Example 7 To discover the inverse of a matrix
A of the form

A=al - bxx:
ie.,
Aji = (ab;j —bajxy).
We are looking for Bjk such that

Ajj Bjj, =8
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We assume the form of the inverse, within an un-
determined constant o:

01
Bjk = (]T +Ul‘j Jik )

Since

81
Azj Bjk = (a(sz] —b:cz' J?] )(‘77 -l—O':Cj :Ck)

=01 — 2% Tk +aox; ) — box; vy, (:c] :c])

= bjf, + (a0 —b/a —bo(zjx;))z;zy,

we conclude that,

ac —bja — ba(acj T ) =0,

S0
o b
a? —ab(z-x)
Thus,
I br x
A== ———
= a+a2—ab(§-§)

Example 8. Verifying the relationship between
the axis-angle formulation and quaternions:

Consider a unit quaternion
[ s\ _ [ cos(8/2)
=\ v )~ sin(0/2)r

T2

Thus,
and

The rotation

0 _
<R0t(a) ) = qaq

The scalar part becomes

sa-v—sa-v=0

The vector part becomes

s(sa —a xv)+(a-v)v+vX(sa—axv)

The i-th component of the vector part of the rotation
becomes

s2a; — 2s(a X v); + (@ - V)v; — €KV €kpgpVy
s2a; — 2s(a X v); + (a - v)v; — (€ijkErpg)VjApV,
= s%a; —2s(a x v; + (a - v)v; — (vja;v; — vja;v;)
s2a; —vjvja; + 2(vja;v; — 2sa X v

cg/Qa,— — 33/2%- + 253/2”1"]‘(1]' — SPEijk ATk

coai — Sg€ijra;Tk + (1 — co)rirja;

(09(51']' — Sp€ikTE t+ (1 — Cg)’l’ﬂ"j)aj

= (1”1'1”]' + Cg(éij - 1”1'7’]') - SgGijk’l”k)aj

which verifies the relationship (see identity 22).

8.1 Sample identities using the no-sum
operator.

A few identities using the no-sum operator are
listed. This is not an exhaustive exploration; the
purpose is to give an intuitive feeling for the ter-
minology. It is hoped that this new terminology
may be helpful in the development of multicom-
ponent symbolic manipulative skill.

aj by
Yi(a;jb;)=(| agby |);
i az b3
ay 0 0
Yo (bijai) =Y (8ja;)=(] 0 az 0 |);
i J 0 0 asz

J

ij( 6ij ;) =Y (a; b;)

bi ) (850;) =Y (ajb;)

]

fplkzk:( 0 9% ) = Y (epij 95)

j
1; Y (a;b;) =a;b;
i
In the prefix subscript form, the nosum symbol
is not written into the expression — the prefix
subscript is sufficient by itself. Thus, the above
expressions may also be represented via:
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aj by
(; a;b;) = (] agba |);
ag b3
a 0 0
(; 6i50;) =(j bj5a5)=(] 0 ag 0 |)y
0 0 as

bi (; 635 a;) = (5 ajbj)
bj(; 055a;) =(; a;b;)
etk (& Okj9k) = (G €p1j 95)
1i (i a;b;) = a;b;
Please note that many of the above algebraic sub-
expressions are not tensors — they do not follow

the tensor transformation rules from one coordi-
nate system to another.

8.2 Equations of motion of rigid Bod-
ies using Esn.

Given a rigid body with mass m, density
p(x,y, z), position of center of mass in the world
x, position of center of mass in the body at its
origin, a net force F, net torque 7', momentum
p, angular momentum L, angular velocity w, ro-
tation quaternion g, rotational inertia tensor in
body coordinates g’”dy, the equations of motion
for the rigid body in the lab frame becomes:

d/dt x; =p; /m

d/dt q; = 1/2/<va'jk w; qp,

d/dt p; = F;
djdt L; =T,
where
w; = (I(fl))ij Lj ,
(ICD)i5 = mypmis (1)) ps
mij = wijkl 4 9 /(@ 0,
and

(IbOdy)ij = /body p(%y,z)(&ij Tp T —2; 7 ) dx dy dz.

A point in the body b**% transforms to the point
in space b through the following relation:

b; = MZ] (bbody)j +x;
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Appendix A - Derivation of 3D
epsilon-delta rule.

To derive the identity,

[k [dpg = %ip%ka ~ 2ja*kp

first evaluate the expression with independent in-
dices for 7, k, p, and ¢, and then expand the sum
over the bound index i, letting ¢ equal {1,2,3},
but in the order starting with j, then j + 1, and
Jj + 2 ( modulo 3, plus 1).

“ligk] lipd]
e+ 1)[ik] € + 1][pa)
T €+ 20[ik] €l + 2)[pg)

“i[jk] ©i[pq]

The first term is zero, due to the repeated index
j. There is a nonzero contribution only where
k = j + 2 in the second term, and £k = j + 1 in
the third.

= “k=j+2 [+1pg
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Expanding the two nonzero terms of the permu-
tation symbols:

Lk = j + 2] Q=st2lle=i] = Lp=slla=i+21)
g = j + 1) (Cl=itlle=s] T Lp=jlle=j+1])

Expand, add and subtract the same term, then collect
into positive and negative terms:

= k=42 p=j+20=
Hk=j+2 Yp=jlla=j+2]
“Mre=j+1) p=j+1g=1
Hr=j+1 p=ila=j+1]
e = p=jllg=3)
=4 p=jllg=4)

= (lp=j) Yp=i] “Ur=j+1 dp=j+1

e=j+2 p=j5+2) Yg=1

o lk=5+2 Yg=5+2) Yp=1

Since j takes on only three values; the first parenthetic
expressions is 1 if k equals p, and the other is 1 if k
equals q.

=ita=# "ta=4tw=4k

= i Pqk ~ Pqj Opk
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