
Initially, the prinicpal axes e1, e2, e3 coicide with the x,y,z axes. The rigid triangle is represented as
three vertex positions, ra, rc, rd, in the x,y,z coordinate system, which is centered on the triangle’s CoM.
After each time step of size dt, we update each position vector with r := r + dt * velocity, where velocity =
ω ⨯ r, and then we update ω according to the Euler equations. We repeat this many times to generate
a list of images, forming an animation. In order to move the ω vector from body frame to space frame, I
keep track of the “direction cosines” that map each body-frame unit vector into the space frame. In
other words, the vector e1 starts out as {1,0,0} but at any given time contains the space-frame compo-
nents of the e1 unit vector, and so on for e2 and e3.

In[1]:= (* The body unit vectors, e1, e2, e3, are
initiallyalong the x,y,z space axes. *)

e1 = {1, 0, 0};
e2 = {0, 1, 0};
e3 = {0, 0, 1};
(* Time step for each frame of the animation .

We want to keep the product ω dt small ,
since we're using the expressions for
infinitesimal rotations. *)

dt = 0.01;
(* The initial(space frame) positions of the

three vertices, A, C, D, of the triangle. *)
ra = {-2, -1, 0};
rc = {+2, -1, 0};
rd = {0, +1, 0};
(* Principal moments of inertia *)
λ1 = 6; λ2 = 8; λ3 = 14;
(* Function to rotate vector x by infinitesimal

rotation vector ωdt *)
rot[x_, ωdt_] := Block[{norm },

norm = Norm [x];
xrot = x +ωdt ⨯ x;
xrot * norm / Norm [xrot]

];
(* Initial value of rotation vector ω in the

body frame , which initiallycoincides with
the space frame . *)

ωbody = {2.0, 3.0, 0.0};
ωbody = ωbody / Norm [ωbody];
(* Save the initialmagnitude of angular-momentum

vector. I do this so that I can scale the displayed
vector to a size that is easy to see, in such a way

that we would still notice if some bug caused the
magnitude of the angular momentum to change. The
angular momentum is shown as a red arrow. *)

lbody0 = ωbody * {λ1, λ2, λ3};
lspace0 = lbody0; (* Since frames initiallycoincide *)
lmagnitude0 = Norm [lbody0];
(* Save the initialmagnitude of the rotation vector,

so that we can display a scaled version of this
vector as a (black) arrow on the animation . *)

ωmagnitude0 = Norm [ωbody];
(* Shortcut for origin of coordinate system . *)
o = {0, 0, 0};
(* This "function" simply updates the pertinent variables,

according to the Euler equations, for each time step.
Its return "value" is the next frame of the animation ,

i.e. a 3D graph showing the current orientation of the
triangle, with the angular-momentum and ω vectors drawn
as arrows. All of this is drawn in the space frame . *)

nexttriangle:= Block[{},
(* Project rotation vector into space frame . *)
ωspace = ωbody[[1]]e1 +ωbody[[2]]e2 +ωbody[[3]]e3;
ωdt = ωspace dt;
(* Update the space-frame triangle vertex positions *)
ra = rot[ra, ωdt];
rc = rot[rc, ωdt];
rd = rot[rd, ωdt];
(* Update the space-frame representations of the

three body-axis unit vectors. *)
e1 = rot[e1, ωdt];
e2 = rot[e2, ωdt];
e3 = rot[e3, ωdt];
(* Use the Euler equations of motion (torque-free)

to update the rotational velocity, as evaluated
in the body frame . *)

ω1dot = ωbody[[2]] *ωbody[[3]] * (λ2-λ3) /λ1;
ω2dot = ωbody[[3]] *ωbody[[1]] * (λ3-λ1) /λ2;
ω3dot = ωbody[[1]] *ωbody[[2]] * (λ1-λ2) /λ3;
ωbody = ωbody + {ω1dot, ω2dot, ω3dot}dt;
(* Recalcualte angular-momentum vector in body frame ,

then project it to the space frame , as a check to
make sure simulation is working. The lspace
vector should stay constant if all is well. *)

lbody = {ωbody[[1]]λ1, ωbody[[2]]λ2, ωbody[[3]]λ3};
lspace = lbody[[1]]e1 + lbody[[2]]e2 + lbody[[3]]e3;
(* Draw (in space frame) the triangle vertices,

the angular-velocity vector (black), and the
angular-momentum vector (red). This graphic
constitutes one frame of the animation . *)

Graphics3D[
{Triangle[{ra, rc, rd}],

Arrow[{o, 2*ωspace /ωmagnitude0 }],
Thick, Red, Arrow[{o, 2.4*lspace /lmagnitude0 }]},

PlotRange→ {{-2.5, 2.5}, {-2.5, 2.5}, {-2.5, 2.5}}]
];

(* I have no idea why I needed to create a Block here
with an evaluation of "dummy " inside of it. It didn't
seem to work when I had only "nexttriangle" inside
the Animate [] call. *)

Animate [Block[{},
dummy ;
nexttriangle], {dummy , 0, Infinity}]

2 strucktriangle.nb

Out[18]=

dummy

(* I did this to export the movie files *)
(*
frames = Table[nexttriangle, {dummy , 0, 10000}];
Export["strucktriangle.avi", frames [[Range[1,10000, 50]]]];
ListAnimate [frames , 20]
*)

strucktriangle.nb 3

