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pipe. The range in depth of the water was less than
0.025 mm, but it was measured with a microscope
to within 1 percent. The experiment was performed
with pipes running both east and west and north and
south.

The tides produced in the pipes were only 69
percent as great as would be expected from calcula-
tions based on the assumption that the earth is com-
pletely rigid. It is from this experiment that the
extent of the tides produced in the solid earth could
be inferred. .

o

() Other tides

The tides produced by the moon and the sun upon
the earth are not the only tides in nature. The earth
exerts a tidal force upon the moon that is stronger
than the one the moon exerts upon the earth. Over
many millions of years the earth’s tidal force has
acted as a brake on the lunar rotation, so that today
the moon keeps the same face turned toward the
earth.

In fact, all bodies in the universe exert a tidal
force on all other bodies, just as they exert a general
gravitational attraction. In most cases these tidal
forces are too small to produce observable effects. For
example, the tides produced by planets on each
other, and on the sun, are entirely negligible. On the
other hand, we find instances of binary stars, in
which the two stars are so close together as to pro-
duce substantial tidal distortion, many times greater
than that produced by the earth and moon upon
each other (see Chapter 23).

(g) Criteria for a satellite

We can now delineate the criterion for the maximum and
minimum distances that a satellite can have from a
planet. The former depends on the differential gravita-
tional force of the sun and the latter on the tidal force
of the planet itself. For a satellite to remain always in
a closed orbit about a planet, its orbital velocity, with
respect to that planet, must always be less than its
velocity of escape, or the parabolic velocity. The formula
for velocity of escape, given in Section 5.4, assumes that

the only force between two bodies is their mutual gravita-
tional attraction. However, this attraction must be cor-
rected for the differential gravitational force between the
two if a third body is present.

A related problem is to find the minimum distance
a satellite can be from its planet. At smaller distances
the satellite could not withstand the differential, or tidal,
forces exerted on it by the planet and would be torn apart.
E. Roche investigated the problem in 1850 and found that
if the constituent parts of a satellite are held together only
by their mutual gravitation, as, for example, in a liquid
body, and if the satellite has the same density as its
planet, the critical distance is 2.44 times the planet’s
radius. At a greater distance, the satellite suffers only tidal
distortion, but holds together. At a smaller distance it is
torn apart by the tidal forces, for they are greater than
the gravitational forces holding the satellite together. If
the satellite has high rigidity, so that cohesive forces add
to gravitational ones in binding it together, it could survive
at a somewhat smaller distance from the planet. The
critical distance at which a satellite can survive tidal
destruction is called Roche’s limit. The rings of Saturn
are particles that are closer to the planet than the distance
at which a large solid body can survive—that is; they are
within Roche's limit.

6.5 Precession

The earth, because of its rapid rotation, is not per-
fectly spherical but has taken on the approximate
shape of an oblate spheroid; its equatorial diameter
is 43 km greater than its polar diameter. As we have
seen, the plane of the earth’s equator, and thus of
its equatorial bulge, is inclined at about 23%° to the
plane of the ecliptic, which, in turn, is inclined at
5° to the plane of the moon’s orbit. The differential
gravitational forces of the sun and moon upon the
earth not only cause the tides but also attempt to
pull the equatorial bulge of the earth into coinci-
dence with the ecliptic.

The latter pull is illustrated in Figure 6.18.
The solid arrows are vectors that represent the at-
traction of the moon on representative parts of the
earth. The part of the earth’s equatorial bulge nearest
the moon is pulled more strongly than the part far-
thest from the moon, and the earth’s center is pulled
with an intermediate force. The dashed arrows show
the differential forces with respect to the earth’s
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FIGURE 6.18 Differential force of the moon on the oblate earth tends to “erect’

its axis.

center. Note how they tend not only to “stretch”
the earth toward the moon, but also to pull the
equatorial bulge into the plane of the ecliptic. The
differential force of the sun, although less than half
as effective, does the same thing. Thus, the gravita-
tional attractions of the sun and the moon on the
earth act in such a way as to attempt to change the
direction of the earth's axis of rotation, so that it
would stand perpendicular to the orbital plane of the
earth. To understand what actually takes place, we
must digress for a moment to consider what happens
when a similar force acts upon a top or gyroscope.

(a) Precession of a gyroscope

Consider the top (a simple form of gyroscope) pic-
tured in Figure 6.19. If the top’s axis is not perfectly
vertical, its weight (the force of gravity between it
and the earth) tends to topple it over. The actual
force that acts to change the orientation of the axis
of rotation of the top is that component of the top’s

 weight that is perpendicular to its axis. We know

from watching a top spin that the axis of the top
~does not fall toward the horizontal, but rather moves

off in a direction perpendicular to the plane defined
by the axis and the force tending to change its
orientation. Until the spin of the top is slowed down
by friction the axis does not change its angle of
inclination to the vertical (or to the floor), but rather
describes a conical motion (a cone about the vertical
line passing through the pivot point of the top). This
conical motion of the top’s axis is called Precession.

Component of weight
tending to ““topple” top

Weight of top

FIGURE 6.19 Precession of a top.
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FIGURE 6.20 (a) Force applied to the axis of a simple gyroscope; (b) the new
orientation taken by the gyroscope.

(b) Qualitative explanation of precession

The surprising phenomenon of precession can be under-
stood in terms of Newton's laws of motion. Consider,
for simplicity, the jack-shaped gyroscope in Figure
6.20(a), consisting of four masses supported at the ends
* of rigid light rods perpendicular to each other and to the
axis of rotation. As the gyroscope spins, the masses
move in the piane indicated. Suppose now that a force
F is applied to the axis in a direction perpendicular to
the plane defined by the axis of the jack and the line
between masses 2 and 4. The force is transmitted
through the rods to each of the four masses. Mass 1 feels
a force tending to raise it (in the orientation of the
diagram), and mass 3 feels a force tending to lower it;
only masses 2 and 4 do not feel forces in the vertical
direction. Masses 2 and 4 tend to continue moving in
the same plane as before the force was applied. Mass
1 accelerates upward, but because of its forward motion
it moves along the path ab. Similarly, mass 3 accelerates
downward, but because of its forward motion follows
path cd. Thus, after a part of a revolution, the masses
are in the positions shown in Figure 6.20(b). The axis
of rotation has changed, not in the direction of the ap-
plied force, but at right angles to it.
The above discussion is not a very rigorous de-
scription of precession; it is intended only to give the
“reader some feeling for the fact that the axis of a spin-
ning top does not yield in the direction of a force acting
on it. When we consider how each of the constituent

parts of the top should behave under the influence of
the applied force we can understand the apparently
strange motion of the axis of the whole spinning body
in terms of Newton's laws. It can be shown, however,
by a rigorous mathematical treatment, that if a force is
applied to the axis of any spinning body, the axis itseif
will move in a plane perpendicular to that defined by the
force and the instantaneous axis of rotation.

(c) Precession of the earth

The differential gravitational force of the sun on the
carth tends to pull the earth’s equatorial bulge into
the plane of the ecliptic, and that of the moon tends
to pull the bulge into the plane of the moon’s orbit,
which is nearly in the ecliptic. These forces, in other
words, tend to pull the earth’s axis into a direction
approximately perpendicular to the ecliptic plane.
Like a top, however, the earth’s axis does not yield
in the direction of these forces, but precesses. The
obliquity of the ecliptic remains approximately
23Y,°. The earth’s axis slides along the surface of an
imaginary cone, perpendicular to the ecliptic, and
with a half-angle at its apex of 23%,° (see Figure 6.21).
The precessional motion is exceedingly slow; one
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FIGURE 6.21 Precession of the earth.

complete cycle of the axis about the cone requires
about 26,000 years.

Precession is this motion of the axis of the
earth. It must not be confused with variation in
latitude (Chapter 7), which is caused by a slight
wandering of the terrestrial poles with respect to the
earth’s surface. Precession does not affect the cardi-
nal directions on the earth nor the positions of geo-
graphical places that are measured with respect to
the earth’s rotational axis, but only the orientation
of the axis with respect to the celestial sphere.

Precession does, however, affect the positions
among the stars of the celestial poles, those points
where extensions of the earth’s axis intersect the

celestial sphere. In the twentieth century, for exam-

ple, the north celestial pole is very near Polaris. This
was not always so. In the course of 26,000 years, the
north celestial pole will move on the celestial sphere
along an approximate circle of about 23%,° radius,

. tentered on the pole of the ecliptic (where the per-
pendicular to the earth’s orbit intersects the celestial

sphere). This motion of the pole is shown in Figure
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6.22. In about 12,000 years, the celestial pole will be
fairly close to the bright star Vega.

As the positions of the poles change on the
celestial sphere, so do the regions of the sky that are
circumpolar; that is, that are perpetually above (or
below) the horizon for an observer at any particular
place on earth. The Little Dipper, for example, will
not always be circumpolar as seen from north tem-
perate latitudes. Moreover, 2000 years ago, the
Southern Cross was sometimes visible from parts of
the United States. It was by noting the very gradual
changes in the positions of stars with respect to the
celestial poles that Hipparchus discovered precession
in the second century B.C. (Section 2.3c).

(d) Nutation

If the differential gravitational attractions of the sun and
moon upon the earth's equatorial bulge were always
exactly the same, precession of the earth’s axis would
be the smooth conical motion we have described in the
preceding sections. However, the effect of the differential
forces on the orientation of the earth’s axis depends on
the directions of the sun and moon with respect to the
direction of its 23Y,° tilt. These directions change as the
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FIGURE 6.22 Precessional path of the north celestial pole
among the northern stars.
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earth and moon move in their respective orbits. More-
over, the moon's orbit is inclined at about 5° to the
ecliptic. Not only is that 5° inclination slightly variable
itself, but the intersections of the moon’s orbit with the
ecliptic slide around the ecliptic in 18.6-year intervals (the
regression of the nodes). '
The average effect of the sun and moon on the
earth’s equatorial bulge is to produce the relatively
smooth precession we have described. We define the
mean pole of rotation of the celestial sphere as a ficti-
tious one that describes this smooth precessional mo-
tion. The motion of the actual celestial pole varies slightly
around the motion of the mean pole. These variations,
which are quite small, can be faitly well represented by
an elliptical orbit of the actual pole about the mean pole
with a semimajor axis of 9”7.2, and a period of about 19
years. In other words, the motion of the celestial pole
about the ecliptic pole is not quite a perfect circle, but
a slightly wavy circle, with the “waves’ having ampli-

tudes of about 9 seconds of arc (")—small compared.
to the 23Y,° radius of the precessional orbit of the pole -

in the sky. This slight “nodding” of the pole about a
smooth circle is called nutation.

(e) Planetary precession

Up to now we have implied that the plane of the earth’s
orbit is fixed in space. The earth’s orbit, however, is
constantly being perturbed by the gravitational attrac-
tions of the other planets upon the earth. These perturba-
tions are very slight, but they do measurably alter the
plane of the earth's orbit and hence the position of the
pole of the ecliptic on the celestial sphere. This motion
of the pole of the ecliptic, only a fraction of a second
of arc per year, adds to the complications of precession.

The motion of the mean celestial pole with respect
to the ecliptic pole is called lunisolar precession. The
motion of the ecliptic pole, because of planetary per-
turbations of the earth’s orbital motion, is called plane-
tary precession; the ecliptic pole moves only about one-
fortieth as fast as the celestial pole. The two kinds of
motion combined give general precession.

EXERCISES

1. Find the separation d between two small bodjies,
each of unit mass, lined up with a large body
of mass M, at a distance R from the nearest of
the small bodies, such that the gravitational at-
traction between the small bodies is just equal
to the differential gravitational force between
them caused by their attraction to the large

10.

11.

12.

body. The answer should be in terms of G, M,
and R.

. If the three bodies described in the last exercise

are free to move and no other bodies or forces
are present, how may their motion be described?
How do the various forces change as the bodies
move!?

. Strictly speaking, should it be a 24-hour period

during which there are two “high tides”? If not,
what should the interval be?

. Compute the relative tide-raising effectiveness of .

the sun and the moon. For this approximate
calculation, assume that the earth is 80 times as

" massive as the moon, that the sun is 300,000

times as massive as the earth, and that the sun
is 400 times as distant as the moon.
Answer: Moon is ¥, times as effective

. Explain why the north celestial pole moves in

the sky along a circle centered on the pole of
the ecliptic, rather than some other point.

. What will be the principal north circumpolar

constellations as seen from Los Angeles (latitude
34° north) in the year 18,000

. In the year 13,000, will Orion be circumpolar as

seen from the North Pole? Explain.

. What would be the annual motion of the equi-

noxes along the ecliptic if the entire precessional
cycle required only 360 years?

. Describe how perturbdtions of the earth’s mo-

tion by Mars can be considered as due to differ-
ential gravitational force.

Does a bicycle offer another example of preces-
sion? Explain. (Hint: Consider how a rider can
steer by leaning to one side.)

If the precessional rate is about 50” per year,

show that the complete cycle is about 26,000
years.

The radius of curvature of the earth at a particu-
lar point is the radius of a sphere whose surface
matches the curvature of the earth at that point
(see Figure 6.3). How much greater is the radius
of curvature of the earth at the poles than at the
equator?




