
Physics 351, Spring 2017, Final Exam.

This closed-book exam has (only) 25% weight in your course grade. You can use one 3 × 5 card of
your own hand-written notes. Please show your work on these pages. The back side of each page
is blank, so you can continue your work on the reverse side if you run out of space. Try to work in
a way that makes your reasoning obvious to me, so that I can give you credit for correct reasoning
even in cases where you might have made a careless error. Correct answers without clear reasoning
may not receive full credit.

The last page of the exam contains a list of equations that you might find helpful, to complement
your own note card. You can detach it now if you like, before we begin.

The exam contains four questions, of equal weight. So each question is worth 25%. You might want
to start with whichever questions you find easiest.

Because I believe that most of the learning in a physics course comes from your investing the time to
work through homework problems, most of these exam problems are similar or identical to problems
that you have already solved. The only point of the exams, in my opinion, is to motivate you to take
the weekly homework seriously. So you should find nothing very surprising in this exam.

Name:
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Problem 1.
A uniform, infinitesimally thick, square plate of mass m and side length d is allowed to undergo
torque-free rotation. (Imagine a dinner plate tossed in the air like a frisbee, but neglecting air
resistance.) At time t = 0, the normal to the plate, ê3, is aligned with ẑ, but the angular velocity
vector ω deviates from ẑ by a small angle α. The figure below depicts the situation at time t = 0,
at which time ê1 = x̂, ê2 = ŷ, ê3 = ẑ, and ω = ω(cosαẑ + sinαx̂).

(a) Show (or argue) that the inertia tensor has the form

I = I0

 1 0 0
0 1 0
0 0 2

 and find the constant I0.

(b) Calculate the angular momentum vector L at t = 0. Write L(t = 0) both in terms of ê1,ê2,ê3
and in terms of x̂,ŷ,ẑ. Which of these two expressions will continue to be valid into the future?
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(c) Draw a sketch showing the vectors ê3, ω, and L at t = 0. Be sure that the relative orientation
of L and ω makes sense. This relative orientation is different for egg-shaped (“prolate”) objects
(λ3 < λ1) than it is for frisbee-like (“oblate”) objects (λ3 > λ1).

(d) Draw and label the “body cone” and the “space cone” on your sketch.

(e) Calculate the precession frequencies Ωbody and Ωspace. Indicate the directions of the precession
vectors Ωbody and Ωspace on your drawing. Be careful with the “sign” of the Ωbody vector, i.e. be
careful not to draw −Ωbody when you mean to draw Ωbody.
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(f) You argued in HW11 that Ωspace = Ωbody + ω. Verify (by writing out components) that this
relationship holds for the Ωspace and Ωbody that you calculate for t = 0.

(g) State in words the meaning of Ωspace and Ωbody.

(h) In the α � 1 limit (to first order in α, so tanα ≈ α, tan(2α) ≈ 2α, etc.), find the maximum
angle between ẑ and ê3 during subsequent motion of the plate. This should be some constant factor
times α. A simple argument is sufficient here, no calculation.

page 4 of 14



(i) At what time t is this maximum deviation first reached?

(j) Feynman’s anecdote about a dinner plate tossed through the air in a Cornell cafeteria states,
“when the angle [α] is very slight, the [red Cornell] medallion [on the plate] rotates twice as fast as
the wobble rate.” Was he remembering correctly? (Explain briefly.)
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Problem 2. Hamiltonian treatment of a spherical pendulum.
The “spherical pendulum” is just a simple pendulum that is free to move in any sideways direction.
(By contrast a “simple pendulum” — unqualified — is confined to a single vertical plane.) The bob
of a spherical pendulum moves on a sphere, centered on the point of support with radius r = R,
the length of the pendulum. A convenient choice of coordinates is spherical polars, r, θ, φ, with the
origin at the point of support and the polar axis pointing straight down. The two variables θ and φ
make a good choice of generalized coordinates.

(a) Write the Lagrangian in terms of θ, θ̇, φ, and φ̇.

(b) Write the Hamiltonian in terms of θ, pθ, φ, and pφ. [In case it saves you some time, I can tell
you that this choice of coordinates is indeed “natural.”]
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(c) Which generalized coordinate is “ignorable?” Write both a name and an expression for the
corresponding conserved quantity.

(d) Write all four Hamilton’s equations for this system.

(e) Combine two of the four equations to write an expression for θ̈.
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(f) Suppose that we let θ = θ0 + ε, so that ε̈ = θ̈ = f(θ) = f(θ0 + ε) ≈ f(θ0) + ε f ′(θ0). What value
would f(θ0) have for circular orbits, in which θ would remain constant: θ ≡ θ0? (Usually writing
this condition lets you solve for θ0, but don’t spend time doing that here.)

(g) For small oscillations of θ with respect to θ0, how would the frequency of small oscillations relate
to f ′(θ0)? Do you expect f ′(θ0) to be positive or negative? [There is nothing to solve here. We are
just speaking in general terms.]

(h) In general (not directly related to the above problem), what must be true of the relationship
between the inertial Cartesian coordinates (e.g. x, y) and the generalized coordinates (e.g. q1, q2) for
the Hamiltonian H(q1, q2, p1, p2, t) to equal the total energy of the system?

(i) If ∂L/∂t = 0, what statement can be made about H?
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Problem 3.
Consider the double pendulum consisting of two bobs confined to move in a plane. The rods are of
equal length `, and the bobs have equal mass m. The generalized coordinates used to describe the
system are θ1 and θ2, the angles that the rods make with the vertical.

(a) Write the Lagrangian for the system. (This could be an opportunity
to save some tedious algebra by writing (v1 +v2)

2 = v21 +v22 + 2v1 ·v2.)
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(b) Next, simplify your Lagrangian from part (a) by assuming that angles θ1 and θ2 are both small.
Keep terms up to second order (total) in the angles, the angular velocities, and their products.

(c) Find the two Lagrange equations of motion, which will be a set of coupled, linear differential
equations. [You don’t need to solve these equations!]
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Problem 4.
We’re going to work out the equations of motion for a Foucault pendulum. First we’ll use the
Newtonian method, then we’ll use the Lagrangian method to find the same result. Since this is not
an adaptation of a homework problem, I will try to guide you through it.

A Foucault pendulum consists of a very heavy mass m (the “bob”) suspended from a very tall ceiling
by a light wire of length L. This arrangement allows the pendulum to swing freely for a very long
time and to move in both the east-west and the north-south directions. Let x̂ point east, let ŷ point
north, and let ẑ point up (away from Earth’s center). Let (x, y, z) = (0, 0, 0) be the equilibrium
position of the bob. The very tall ceiling allows us to approximate x� L, y � L, z ≈ 0.

(a) If we ignore Earth’s rotation, we find ẍ and ÿ equations of motion that are completely uncoupled.
To save you the hassle of working it out, the restoring force in x (the x component of the wire tension
acting on the bob) has magnitude mgx/L, and the restoring force in y has magnitude mgy/L. Write
down the two (uncoupled) equations of motion for ẍ and ÿ, each of which should independently
describe the familiar motion of an ordinary plane pendulum at small amplitude.

(b) Our favorite velocity-dependent fictitious force will couple these two equations of motion, adding
one term to the expression for ẍ and adding one term to the expression for ÿ. The added terms will
depend on some combination of the velocities ẋ and ẏ, the colatitude θ, and Earth’s angular velocity
of rotation Ω. Using your knowledge of fictitious forces, find the expressions for ẍ and ÿ.
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(c) Let’s suppose that at t = 0 we displace the bob a distance A � L due east of its equilibrium
position and release it from rest. Check that your equations of motion are satisfied by

x(t) = A cos(Ωzt) cos(ω0t) y(t) = −A sin(Ωzt) cos(ω0t)

where Ωz = Ω cos θ and ω0 =
√
g/L. Since Ω� ω, you should ignore any terms of order Ω2.
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(d) Now use the Lagrangian approach to find the same ẍ and ÿ equations of motion that you found in
part (b), in terms of the same x (east) and y (north) coordinates. Because the pendulum’s amplitude
A � L, you can approximate the potential energy as U = mg(x2 + y2)/(2L). (If you had time to
work it out yourself, the factor of 2 would come from the cosine of the small angle

√
x2 + y2/L.) To

write the kinetic energy in the inertial “space” frame, you will need the vector r = (x, y, R) that
points from Earth’s center to the bob’s position, where R is Earth’s radius. Write L, then find ẍ and
ÿ, which should agree with part (b). Ignore (as early as you like) any terms of order Ω2.

Congratulations! You have solved the quintessential fictitious-force problem!
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Possibly useful equations.

(
dQ

dt

)
space

=

(
dQ

dt

)
body

+ Ω×Q

mr̈ = F + 2m ṙ ×Ω + m (Ω× r)×Ω = F + 2mv ×Ω + mΩ2ρ ρ̂

For a uniform solid cylinder of radius R about its symmetry axis, I = mR2/2. For a uniform thin
rod of length L about its center (perpendicular to the rod axis), I = mL2/12. For a rectangular plate
about its center (rotation axis normal to plate), I = m(a2 + b2)/12, where a and b are the short and
long side lengths.

For a free symmetric top, Ωs = L/λ1. One way to prove this is to notice that L
λ1

= ω + λ3−λ1
λ1

ω3ê3,
then to see how ê3 evolves in time.

Euler equations:
τ1 = λ1ω̇1 − (λ2 − λ3)ω2ω3

τ2 = λ2ω̇2 − (λ3 − λ1)ω3ω1

τ3 = λ3ω̇3 − (λ1 − λ2)ω1ω2

If τ = 0 and λ1 = λ2 then the Euler equations reduce to the simpler form

ω̇3 =
λ1 − λ1
λ3

ω1ω2 = 0

ω̇1 =
λ1 − λ3
λ1

ω2ω3 = −
(
λ3 − λ1
λ1

ω3

)
ω2 = − Ωb ω2

ω̇2 =
λ3 − λ1
λ1

ω3ω1 =

(
λ3 − λ1
λ1

ω3

)
ω1 = Ωb ω1

so we can represent the precession of the ω vector as an angular velocity vector Ωb with

Ωb =

(
λ3 − λ1
λ1

ω3

)
ê3.

You shouldn’t need to use this, but here it is anyway, to remind you of the definitions of θ and φ:

x = r sin θ cosφ y = r sin θ sinφ z = r cos θ
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