
Physics 351, Spring 2018, Homework #1.
Due at start of class, Friday, January 26, 2018

Schedule and handouts are at positron.hep.upenn.edu/p351

Please write your name only on the VERY LAST PAGE of your
homework submission, so that we don’t notice whose paper we’re
grading until we get to the very end.

When you finish this homework, remember to tell me how the homework went
for you, by visiting the feedback page at

positron.hep.upenn.edu/q351

1. The differential equation (1.51) for the skateboard of Example 1.2 cannot
be solved in terms of elementary functions, but is easily solved numerically.
(a) Use Mathematica (or other software if you prefer) to solve the differential
equation for the case that the board is released from φ0 = 20 degrees, using
the values R = 5 m and g = 9.8 m/s2. Make a plot of φ(t) for two or three
periods. (b) On the same picture, plot the approximate solution (1.57) with
the same φ0 = 20◦. Compare your two graphs. (c) Repeat parts (a) and
(b) using the initial value φ0 = π/2 and compare. You will need to learn to
use Mathematica’s NDSolveValue command and to plot the solution that it
provides using the Plot command. The Plot command can also graph the
approximate solution (1.57). The graph is most informative if you overlay the
numerical solution and the approximate solution on the same axes for direct
comparison. I’ll illustrate in class how to do these things in Mathematica.

2. There are certain simple one-dimensional problems where the equation of
motion (Newton’s second law) can always be solved, or at least reduced to the
problem of doing an integral. One of these (which we have met a couple of
times in Chapter 2) is the motion of a one-dimensional particle subject to a
force that depends only on the velocity v, that is, F = F (v). (a) Write down
Newton’s second law and separate the variables by rewriting it as m dv

F (v)
= dt.

Now integrate both sides of this equation and show that

t = m

∫ v

v0

dv′

F (v′)
.

Provided you can do the integral, this gives t as a function of v. You can then
solve to give v as a function of t. (b) Use this method to solve the special
case that F (v) = F0, a constant force, and notice that you basically get a
“freshman physics” result. (c) Next, use the same method to solve for the
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case in which a mass m has velocity v0 at time t = 0 and coasts along the
x axis in a medium where the drag force is F (v) = −cv3/2. Find v in terms
of the time t and the other given parameters. At what time (if any) will the
mass come to rest?

3. Show that if the net force on a one-dimensional particle depends only on
position, F = F (x), then Newton’s second law can be solved to find v as a
function of x given by

v2 = v20 +
2

m

∫ x

x0

F (x′)dx′.

Hint: use the chain rule to prove the following handy relation: If you regard
v as a function of x, then

v̇ =
dv

dx

dx

dt
= v

dv

dx
=

1

2

dv2

dx
.

Use the above relation to rewrite Newton’s second law in the separated form
m d(v2) = 2F (x) dx and then integrate from x0 to x. Notice that the result
may look familiar (“freshman physics”) in the case that F (x) is actually a
constant. (You should recognize your solution as a statement about kinetic
energy and work.)

4. Use the method of Problem 2 to solve the following: A mass m is con-
strained to move along the x axis subject to a force F (v) = −F0e

v/V , where
F0 and V are constants. (a) Find v(t) if the initial velocity is v0 > 0 at time
t = 0. (b) At what time does the mass come instantaneously to rest? (c) By
integrating v(t), you can find x(t). Do this and show that the distance the
mass travels before coming instantaneously to rest is

∆x =
mV 2

F0

(
1− νe−ν − e−ν

)
where ν ≡ v0/V . (Feel free to do the integral with Mathematica.)

5. A basketball has mass m = 600 g and diameter D = 24 cm. (a) What is its
terminal speed in air? (b) If it is dropped from a 30 m tower, how long does
it take to hit the ground and how fast is it going when it does so? Compare
with the corresponding numbers in a vacuum.

6. Two elephants, each of mass m, are standing at one end of a stationary
railroad flatcar of mass M , which has frictionless wheels. Either elephant
can run to the other end of the flatcar and jump off with the same speed u
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(relative to the car). (a) Use conservation of momentum to find the speed of
the recoiling car if the two elephants run and jump simultaneously. (b) What is
it if the second elephant starts running only after the first has already jumped?
Which procedure gives the greater speed to the car? Hint: The speed u is the
speed of either elephant, relative to the car, just after it has jumped; it has
the same value for either elephant and is the same in parts (a) and (b).

7. A block rests on a wedge whose incline has coefficient of static friction µ
and is at angle θ from the horizontal. (See figure below.) (a) Assuming that
the wedge is fixed in position, find the maximum value of θ such that the block
remains motionless on the wedge. (b) Now suppose that tan θ > µ, so that the
block slides downhill if the wedge is motionless. Also suppose that the wedge
is accelerating to the right with constant acceleration a. Find the minimum
and maximum values of a for which the block can remain motionless w.r.t. the
wedge.

Figure for problem 7:

8. Consider a small frictionless puck perched at the top of a fixed sphere of
radius R. If the puck is given a tiny nudge so that it begins to slide down,
through what vertical height will it descend before it leaves the surface of the
sphere? [Hint: At what value of the normal force between sphere and puck
does the puck leave the sphere?]

9. Use spherical polar coordinates r, θ, φ to find the CM of a uniform solid
hemisphere of radius R, whose flat face lies in the xy plane with its center at
the origin. To do this, you need to remember (or convince yourself) that the
element of volume in spherical polars is dV = r2 dr sin θ dθ dφ.

10. A particle of mass m is moving on a frictionless horizontal table and is
attached to a massless string, whose other end passes through a hole in the
table, where I am holding it. (a) Initially the particle is moving in a circle
of radius r0 with angular velocity ω0, but I now pull the string down through
the hole until a length r remains between the hole and the particle. What is
the particle’s angular velocity now? (b) Now let’s see what happens during
the pull described in part (a). Initially the particle is moving in a circle of
radius r0 with angular velocity ω0. Starting at t = 0, I pull the string with
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constant velocity v so that the radial distance (r) to the mass decreases. Draw
a force diagram for the mass and find a differential equation for ω(t). Find
ω(t) and also find the force F (t) that I need to exert on the string. [Hint: one
component of the force exerted on m by the string is always zero.]

11. Near to the point where I am standing on the surface of Planet X, the
gravitational force on a mass m is vertically down but has magnitude mγy2

where γ is a constant and y is the mass’s height above the horizontal ground.
(a) Find the work done by gravity on a mass m moving from r1 to r2, and use
your answer to show that gravity on Planet X, although most unusual, is still
conservative. Find the corresponding potential energy. (b) Still on the same
planet, I thread a bead on a curved, frictionless, rigid wire, which extends from
ground level to a height h above the ground. Show clearly in a picture the
forces on the bead when it is somewhere on the wire. (Just name the forces
so it’s clear what they are; don’t worry about their magnitude.) Which of the
forces are conservative and which are not? (c) If I release the bead from rest
at a height h, how fast will it be going when it reaches the ground?

Remember online feedback at positron.hep.upenn.edu/q351

(extra credit problems below — some hard, some quite easy!)
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XC1. Optional/extra-credit. Suppose that the basketball of Problem 5 is
thrown from a height of 3 m with initial velocity v0 = 18 m/s at 45◦ above
the horizontal. (a) Use Mathematica (or some other system that you already
know) to solve the equations of motion (2.61) for the ball’s position (x, y) and
plot the trajectory. Also plot the corresponding trajectory in the absence of air
resistance. (b) Use your plot to find how far the ball travels in the horizontal
direction before it hits the floor. Compare with the corresponding range in a
vacuum.

XC2. Optional/extra-credit. The equation (2.39) for the range of a pro-
jectile in a linear medium cannot be solved analytically in terms of elementary
functions. If you put in numbers for the several parameters, then it can be
solved numerically using Mathematica (or similar). To practice this, do the fol-
lowing: Consider a projectile launched at angle θ above the horizontal ground
with initial speed v0 in a linear medium. Choose units such that v0 = 1 and
g = 1. Suppose also that the terminal speed vter = 1. (With v0 = vter, air
resistance should be fairly important.) We know that in a vacuum, the max-
imum range occurs at θ = π/4 ≈ 0.75. (a) What is the maximum range in
a vacuum? (b) Now solve (2.39) for the range in the given medium at the
same angle θ = 0.75. (c) Once you have your calculation working, repeat it for
some selection of values of θ within which the maximum range probably lies
— e.g. you could try θ = 0.4, 0.5, · · · , 0.8. (d) Based on these results, choose
a smaller interval for θ where you’re sure the maximum lies and repeat the
process. Repeat it again if necessary until you know the maximum range and
the corresponding angle to two significant figures. Compare with the vacuum
values.

Mathematica hints: I started this by typing in Equation (2.39) as it appears
in the book and giving this equation the name “eq1”. Since Mathematica’s
built-in functions and variables begin with capital letters, all of my own vari-
ables start with lowercase letters.

eq1 = (vy0 + vter)*r/vx0 + vter*tau*Log[1-r/(vx0*tau)]==0

Then I defined “eq2” to be the same equation with a few handy replacements,
using Mathematica’s ReplaceAll operator, whose shorthand is /. (slash dot),
which when I read it sounds like “such that.”

eq2 = eq1 /. {tau->vter/g, vx0->v0*Cos[th], vy0->v0*Sin[th]}

Then I defined “eq3” to be eq2 with a few more replacements:
eq3 = eq2 /. {v0->1, vter->1, g->1}

which Mathematica then writes as
Log[1 - r*Sec[th]] + r*Sec[th]*(1 + Sin[th]) == 0

To solve this for θ = 0.75, I do one more replacement and use the Solve func-
tion: Solve[eq3 /. th->0.75] which finds r = 0.499597, which you
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can check by plugging in numbers. (I take only the left-hand side of “eq3” by
taking the “First” element of the equation.)

First[eq3] /. {th->0.75, r->0.4996}

You can repeat the Solve step for other values of θ. You might also want to
check that using vter->1000 gives you approximately the range you calculated
(in these funny units) for part (a). By the way, if you are already a Mathe-
matica expert and you know a more straightforward (but still understandable
by a beginner) way of solving this problem, please send it to me!

XC3. Optional/extra-credit. A ball is thrown with initial speed v0 up an
inclined plane. The plane is inclined at an angle φ above the horizontal, and
the ball’s initial velocity is at an angle θ above the plane. Choose axes with x
measured up the slope, y normal to the slope, and z across it. (a) Write down
Newton’s second law using these axes and find the ball’s position as a function
of time. (b) Show that the ball lands a distance R from its launch point,
where R = 2v20 sin θ cos(θ + φ)/(g cos2 φ). (c) Show that for a given v0 and φ,
the maximum possible range up the inclined plane is Rmax = v20/[g(1 + sinφ)].
(d) For level ground, it is well known that the maximum range occurs for
a projectile thrown at 45◦. Can you give a simple statement of what angle
corresponds to the maximum range for the projectile on an incline?

XC4. Optional/extra-credit. A cannon shoots a ball at an angle θ above
the horizontal ground. (a) Neglecting air resistance, use Newton’s second law
to find the ball’s position as a function of time. (Use axes with x measured
horizontally and y measured vertically.) (b) Let r(t) denote the ball’s dis-
tance from the cannon. What is the largest possible value of θ if r(t) is to
increase throughout the ball’s flight? [Hint: Using your solution to part (a),
you can write down r2 = x2 + y2, and then find the condition that r2 is always
increasing.]

XC5. Let u be an arbitrary fixed unit vector. Show that any vector b satisfies

b2 = (u · b)2 + (u× b)2.

Notice that the first term picks out the part of b that is parallel to u, while
the second term picks out the part of b that is perpendicular to u.

XC6. If r, v, and a denote the position, velocity, and acceleration of a particle,
prove that

d

dt
[a · (v × r)] = ȧ · (v × r).

Hint: Note that the derivative operator d
dt

distributes over vector products
(dot product, cross product) analogously to the way it does over ordinary
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products. So for example,

d

dt
(a · b) = ȧ · b + a · ḃ.

XC7. The two vectors a and b lie in the xy plane and make angles α and β
with the x axis. (a) By evaluating the dot product a · b in two ways [namely
using equations (1.6) and (1.7)] prove the well-known trig identity

cos(α− β) = cosα cos β + sinα sin β.

(b) By similarly evaluating a× b prove that

sin(α− β) = sinα cos β − cosα sin β.

XC8. Problems XC8 and XC9 are (embarrassingly easy) problems from Chap-
ter 2 that I think are worth doing because they walk you through things that
are worth knowing about air resistance. The origin of the quadratic drag force
on any projectile in a fluid is the inertia of the fluid that the projectile sweeps
up. (a) Assuming the projectile has a cross-sectional area A (normal to its
velocity) and speed v, and that the density of the fluid is ρ, show that the
rate at which the projectile encounters fluid (mass/time) is ρAv. (b) Making
the simplifying assumption that all of this fluid is accelerated to the speed
v of the projectile, show that the net drag force on the projectile is ρAv2.

(c) More realistically, as it turns out, the force takes the form fquad = κρAv2

where κ < 1 depends on the shape of the projectile. Show that the boxed
equation reproduces fquad = cv2 = γD2v2, where the density of air at STP is
ρ = 1.29 kg/m3 and given that κ = 1/4 for a sphere. Check that you reproduce
the textbook’s value γ = 0.25 N · s2/m4.

XC9. (a) The origin of the linear drag force on a sphere in a fluid is the
viscosity of the fluid. According to Stokes’s law, the viscous drag on a sphere
is flin = 3πηDv where η is the viscosity1 of the fluid, D is the sphere’s diameter,
and v its speed. Given the viscosity of air at STP, η = 1.7×10−5 N·s/m2, show
that this expression reproduces flin = bv = βDv, where β = 1.6×10−4 N·s/m2.
(b) The quadratic drag force on a moving sphere in a fluid is given by the boxed
equation in Problem XC8. Show that the ratio of drag forces can be written as

1To define viscosity η, imagine a wide channel along which fluid is flowing (x direction)
such that the velocity v is zero at the bottom (y = 0) and increases toward the top (y = h),
so that successive layers of fluid slide across one another with a velocity gradient dv/dy.
The force F with which an area A of any one layer drags the fluid above it is proportional
to A and to dv/dy, and η is defined as the constant of proportionality: F = ηAdv/dy.
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fquad/flin = R/48, where the dimensionless Reynolds number2 is R = Dvρ/η,
where ρ is the fluid’s density. Clearly the Reynolds number is a measure of
the relative importance of the two kinds of drag.

XC10. Prove that the magnetic forces F12 and F21 between two steady current
loops (for which there is no electromagnetic wave to carry away momentum)
obey Newton’s third law. Hints: Let the two currents be I1 and I2 and let
typical points on the two loops be r1 and r2. If dr1 and dr2 are short segments
of the loops, then according to the Biot-Savart law, the force on dr1 due to
dr2 is

µ0

4π

I1I2
s2

dr1 × (dr2 × ŝ)

where s = r1 − r2, and ŝ = s/s. The force F12 is found by integrating around
both loops. Start by writing down the force on dr1 due to dr2, and expand it
using the “BAC-CAB” rule. Do the same thing for the force on dr2 due to dr1.
Each force will have two terms. One term in each force will involve dr1 · dr2,
and you can show that they are the negative of each other. You should be able
to show that the other term in each force is of the form

∮
∇f · dr =

∮
df = 0,

i.e. the line integral of the gradient of a scalar function is zero around a closed
path. This argument thus establishes that F12 = −F21.

Some hints: Let s ≡ r1 − r2. Using A × (B × C) = B(A · C) − C(A · B),
we can write dr1 × (dr2 × ŝ

s2
) = dr2(dr1 · ŝ

s2
)− ŝ

s2
(dr1 · dr2). Also notice that

∇(1
r
) = − r̂

r2
, and so ∇1(

1
s
) = − ŝ

s2
= − s

s3
= − r1−r2

|r1−r2|3 . One way to prove

that is ( ∂
∂x
, ∂
∂y
, ∂
∂z

) 1√
x2+y2+z2

= −1
2

(2x,2y,2z)

(x2+y2+z2)3/2
= − r

r3
= − r̂

r2
. Also note that∮

dr1 · ∇1(
1
s
) = 0 because ∇× (∇f) = 0 for any scalar function f . In general

there will not be very much tricky vector calculus of this sort in Physics 351.

Remember online feedback at positron.hep.upenn.edu/q351

2The factor 1/48 is for a sphere.
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