
Physics 351, Spring 2018, Homework #2.
Due at start of class, Friday, February 2, 2018

Please write your name only on the VERY LAST PAGE of your home-
work submission, so that we don’t notice whose paper we’re grading until
we get to the very end.

When you finish this homework, remember to tell me how the homework went for
you, by visiting the feedback page at

positron.hep.upenn.edu/q351

1. Consider a uniform solid disk of mass M and radius R, rolling without slipping
down an incline which is at angle γ to the horizontal. The instantaneous point of
contact between the disk and the incline is called P . (a) Draw a free-body diagram,
showing all forces on the disk. (b) Find the linear acceleration v̇ of the disk by
applying the result L̇ = Γext for rotation about P . (Remember to use the parallel-
axis theorem for rotation about a point on the circumference.) (c) Derive the same
result by applying L̇ = Γext to the rotation about the CM. (In this case there will be
an extra unknown, the force of friction, which you can eliminate using the equation
of motion of the CM.)

2. A mass m moves in a circular orbit (centered on the origin) in the field of an
attractive central force with potential energy U = krn. (a) Prove the virial theorem,
that T = nU/2. (b) What does the virial theorem (assuming that it generalizes
beyond circular orbits) imply for n = −1 (the gravitational Kepler problem) and
for n = 2 (the harmonic-oscillator problem)? [The motivation for including this
problem is that you may at some point see the virial theorem invoked, e.g. in a
quantum mechanics course, to argue that 〈T 〉 = −1

2
〈U〉 for the Kepler problem (or

the analogous hydrogen atom problem) and that 〈T 〉 = 〈U〉 for the simple harmonic
oscillator.]

3. A chain of mass M and length L is suspended vertically with its lowest end just
barely touching a scale. The chain is released and falls onto the scale. What is the
reading on the scale when a length x of the chain has fallen? [Hint: The reading
on the scale equals the normal force exerted by the scale on the chain. Consider the
motion of the center-of-mass of the chain. The maximum reading is 3Mg.]

4. Which of the following forces are conservative? (a) F = k (x, 2y, 3z) where k is a
constant. (b) F = k (y, x, 0). (c) F = k (−y, x, 0). For those which are conservative,
find the corresponding potential energy U , and verify by direct differentiation that
F = −∇U .
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5. An interesting one-dimensional system is the simple pendulum, consisting of a
point mass m fixed to the end of a massless rod (length l), as shown in the left figure
below. The pendulum’s position can be specified by its angle φ from the equilibrium
position. (a) Prove that the pendulum’s potential energy is U(φ) = mgl(1 − cosφ).
Then write down the total energy E as a function of φ and φ̇. (b) Show that requiring
the total energy E to be independent of time (dE/dt = 0) gives the equation of motion
for φ, and that this EOM is just the familiar Γ = Iα, where Γ is torque, I is moment
of inertia, and α = φ̈. (c) Assuming that φ(t)� 1, solve for φ(t) and show that the
motion is periodic with period τ0 = 2π

√
l/g.

6. Evaluate the work done

W =

∫ P

O

F · dr =

∫ P

O

(Fx dx+ Fy dy)

by the two-dimensional force F = (x2, 2xy) along the three paths joining the origin
to the point P = (1, 1) as shown in the above-right figure and defined as follows: (a)
This path goes along the x axis to Q = (1, 0) and then straight up to P . (b) On this
path y = x2, and you can write dy = 2x dx. (c) This path is given parameterically
as x = t3, y = t2. In this case, convert the integral into an integral over t.

7. Consider a massm on the end of a spring of Hooke’s-law constant k and constrained
to move along the horizontal x axis. If we place the origin at the spring’s equilibrium
position, the potential energy is 1

2
kx2. At time t = 0 the mass is sitting at the

origin and is given a sudden kick to the right so that it moves out to a maximum
displacement at xmax = A and then continues to oscillate about the origin. (a) Write
down the equation for conservation of energy and solve it to give the mass’s velocity ẋ
in terms of the position x and the total energy E. (b) Show that E = 1

2
kA2, and use

this to eliminate E from your expression for ẋ. Use the result (4.58), t =
∫

dx′/ẋ(x′),
to find the time for the mass to move from the origin out to a position x. (c) Solve
the result of part (b) to give x as a function of t and show that the mass executes
simple harmonic motion with period 2π

√
m/k.
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8. A block of mass m slides on a frictionless (horizontal) table and is constrained to
move along the inside of a ring of radius R, which is fixed to the table. At t = 0
the mass is moving (tangentially) along the inside of the ring with velocity v0. The
coefficient of kinetic friction between the block and ring is µ. Find the velocity ṡ and
position s (the arc length traveled) of the block as a function of time.

9. Consider the Atwood machine shown in the right figure above, where the pulley
has radius R and moment of inertia I. (a) Write down the total energy of the two
masses and the pulley in terms of the coordinate x and ẋ. (Remember the K.E. of the
spinning wheel.) (b) Show (as is true for any conservative one-dimensional system)
that you can obtain the EOM for x by differentiating the equation E = const. Check
that the EOM is the same as you would obtain by applying Newton’s second law
separately to the two masses and the pulley, and then eliminating the two unknown
tensions from the three resulting equations. (This problem seems to be hinting toward
the notion that writing down expressions for energies can lead us straightforwardly
to the equations of motion — as we’ll see in the Lagrangian formulation.)

10. The potential energy of a one-dimensional mass m at a distance r from the origin
is

U(r) = U0

(
r

R
+ λ2R

r

)
for 0 < r <∞, with U0, R, and λ all positive constants. Find the equilibrium position
r0. Let x be the distance from equilibrium and show that, for small x, the PE has
the form U = const. + 1

2
kx2. What is the natural angular frequency ω0 for small

oscillations?

11. Another interpretation of theQ of a resonance comes from the following: Consider
the motion of a driven damped oscillator after any transients have died out, and
suppose that it is being driven close to resonance, so that you can set ω = ω0.
(a) Show that the oscillator’s total energy (T + U) is E = 1

2
mω2A2. (b) Show that

the energy ∆Edis dissipated during one cycle by the damping force Fdamp is 2πmβωA2.
(Remember power is Fv.) (c) Hence show that Q ≡ ω0

2β
is 2π times the ratio E/∆Edis.

Remember online feedback at positron.hep.upenn.edu/q351

(extra credit below)
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XC1. Optional/extra-credit. A grenade is thrown with initial velocity v0 from
the origin at the top of a high cliff, subject to negligible air resistance. (a) Using
Mathematica (or your favorite alternative), plot the orbit, with the following param-
eters: v0 = (4, 4), g = 1, and 0 ≤ t ≤ 4 (and with x measured horizontally and y
vertically up). Add to your plot suitable marks (dots or crosses, for example) to show
the positions of the grenade at t = 1, 2, 3, 4. (b) At t = 4, when the grenade’s velocity
is v, it explodes into two equal pieces, one of which moves off with velocity v + ∆v.
What is the velocity of the other piece? (c) Assuming that ∆v = (1, 3), add to your
original plot the paths of the two pieces for 4 ≤ t ≤ 9. Insert marks to show their
positions at t = 5, 6, 7, 8, 9. Find some way to show clearly that the CM of the two
pieces continues to follow the original parabolic path.

XC2. Optional/extra-credit. A system consists of N masses mα at positions rα
relative to a fixed origin O. Let r′α denote the position of mα relative to the CM;
that is, r′α = rα −R. (a) Make a sketch to illustrate this last equation. (b) Prove
the useful relation that

∑
mαr

′
α = 0. Can you explain why this relation is nearly

obvious? (c) Use this relation to prove the result (3.28) that the rate of change of
the angular momentum about the CM is equal to the total external torque about the
CM. (This result is surprising since the CM may be accelerating, so that it is not
necessarily a fixed point in any inertial frame.)

XC3. Optional/extra-credit. [Computer] A mass m confined to the x axis has
potential energy U = kx4 with k > 0. (a) Sketch this potential energy and qualita-
tively describe the motion if the mass is initially stationary at x = 0 and is given a
sharp kick to the right at t = 0. (b) Use (4.58) to find the time for the mass to reach
its maximum displacement xmax = A. Give your answer as an integral over x in terms
of m, A, and k. Hence find the period τ of oscillations of amplitude A as an integral.
(c) By making a suitable change of variables in the integral, show that the period τ
is inversely proportional to the amplitude A. (d) The integral of part (b) cannot be
evaluated in terms of elementary functions, but it can be done numerically. Find the
period for the case that m = k = A = 1.

XC4. Optional/extra-credit. (a) Verify the expression (Eq. 4.59) for the potential
energy of the cube balanced on a cylinder in Example 4.7 (page 130). [Hint: To
understand the rθ factor, imagine the cylinder rolling on the cube.] (b) Make graphs
of U(θ) for b = 0.9r and b = 1.1r, preferably by computer. (For simplicity, choose
units such that r, m, and g all equal 1.) (c) Use your graphs to confirm the findings
of Example 4.7 concerning the stability of the equilibrium at θ = 0. Are there any
other equilibrium points, and are they stable?

XC5. Optional/extra-credit. [Computer] Consider the simple pendulum of Prob-
lem 5. You can get an expression for the pendulum’s period (good for both large
and small oscillations) using the method of (Eq. 4.57), as follows: (a) Using U(φ) =
mgl(1− cosφ), find φ̇ as a function of φ. Next use t =

∫
dφ/φ̇ to write the time for

the pendulum to travel from φ = 0 to its maximum value Φ, and use this to show
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that the period of oscillation is

τ =
τ0

π

∫ Φ

0

dφ√
sin2(Φ/2)− sin2(φ/2)

=
2τ0

π

∫ 1

0

du√
1− u2

√
1− A2u2

where τ0 = 2π
√
l/g. (Use substitution sin(φ/2) = Au, where A = sin(Φ/2).) These

integrals cannot be evaluated in terms of elementary functions, but the second integral
is a standard integral called the complete elliptic integral of the first kind, sometimes
denoted K(A2), whose values can be looked up or calculated with Mathematica’s
EllipticK(A2). (b) Use Mathematica (or your favorite software) to make a graph of
τ/τ0 vs. amplitude Φ, for 0 ≤ Φ ≤ 3 radians and comment. Explain what happens
to τ (and why!) as Φ→ π.

XC6. Optional/extra-credit. If you have not already done so, do XC5(a). (a) If
the amplitude Φ is small, then so is A = sin(Φ/2). If the amplitude is very small,
we can simply ignore the last square root in the integral in (XC1). Show that this
gives the familiar result τ = τ0 = 2π

√
l/g. (b) If the amplitude is small but not

very small, we can improve on the approximation of part (a). Use the binomial
expansion to give the approximation 1/

√
1− A2u2 ≈ 1 + 1

2
A2u2 and show that, in

this limit, τ ≈ τ0[1 + 1
4

sin2(Φ/2)]. (c) What percentage correction does the second
term represent for an amplitude of 45◦? (The exact answer for Φ = 45◦ is 1.040 τ0 to
four significant figures.)

XC7. Optional/extra-credit. A ring of mass M hangs from a thread, and two
beads of mass m slide on it without friction, as shown in the left figure below. The
beads are released simultaneously from rest (given an infinitesimal kick) at the top
of the ring and slide down opposite sides. Show that the ring will start to rise if
m > 3

2
M , and find the angle θ at which this occurs. [Hint: If M = 0, then cos θ = 2

3
.]

You will receive partial extra-credit if you do the problem assuming M = 0, but for
full credit, you must account for the mass M of the ring.

XC8. Optional/extra-credit. The right figure above shows a massless wheel of
radius R, mounted on a frictionless horizontal axle. A point mass M is glued to the
edge of the wheel, and a mass m hangs from a string wrapped around the perimeter
of the wheel. (a) Write down the total PE of the two masses as a function of the
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angle φ. (b) Use this to find the values of m/M for which there are any positions of
equilibrium. Describe the equilibrium positions, discuss their stability, and explain
your answers in terms of torques. (c) Graph U(φ) for the cases m = 0.7M and
m = 0.8M , and use your graphs to describe the behavior of the system if I release it
from rest at φ = 0. (If the system oscillates, you do not need to find the frequency of
oscillation.) (d) Find the critical value of m/M such that if m

M
< (m

M
)crit, the system

oscillates, while if m
M
> (m

M
)crit it does not (if released from rest at φ = 0).

XC9. Optional/extra-credit. Repeat the calculations of Example 5.3 (page 185)
with all the same parameters, but with the initial conditions x0 = 2 and v0 = 0.
Graph x(t) for 0 ≤ t ≤ 4 and compare with the graph of Example 5.3. Explain
the similarities and differences, e.g. for what region in time do the two graphs differ
appreciably?

XC10. Optional/extra-credit. You can make the Fourier series solution for a
periodically driven oscillator a bit tidier if you don’t mind using complex numbers.
Obviously the periodic force of (Eq. 5.90) can be written as f = Re(g), where the
complex function g is g(t) =

∑∞
n=0 fne

inωt. Show that the real solution for the oscil-
lator’s motion can likewise be written as x = Re(z), where z(t) =

∑∞
n=0Cne

inωt and
Cn = fn/(ω

2
0 − n2ω2 + 2iβnω). This solution avoids our having to worry about the

real amplitude An and phase shift δn separately.

XC11. Optional/extra-credit. Use the property (4.35) of the gradient to prove
the following: (a) The vector ∇f at any point r is perpendicular to the surface of
constant f through r. (What is df for a small displacement dr that lies in a surface
of constant f?) (b) The direction of ∇f at any point r is the direction in which f
increases fastest as we move away from r. (Choose a small displacement dr = εu,
where u is a unit vector and ε is fixed and small. Find the direction of u for which
the corresponding df is maximum, bearing in mind that a · b = ab cos θ.)

XC12. Optional/extra-credit. Section 4.8 claims that a force ~F (~r) that is central
and spherically symmetric is automatically conservative. Here are two ways to prove
it. (a) Since ~F (~r) is central and spherically symmetric, it must have the form ~F (~r) =

f(r)r̂. Using Cartesian coordinates, show that this implies that ∇× ~F = 0. (b) Even

quicker, using the expression given inside the textbook’s back cover for ∇ × ~F in
spherical polar coordinates, show that ∇× ~F = 0.

Remember online feedback at positron.hep.upenn.edu/q351
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