
Physics 351, Spring 2018, Homework #4.
Due at start of class, Friday, February 16, 2018

Please write your name only on the VERY LAST PAGE of your home-
work submission, so that we don’t notice whose paper we’re grading until
we get to the very end.

When you finish this homework, remember to tell me how the homework went for
you, by visiting the feedback page at

positron.hep.upenn.edu/q351

1. Using the usual angle φ as a generalized coordinate, write down the Lagrangian
for a simple pendulum of length l suspended from the ceiling of an elevator that is
accelerating upward with constant acceleration a. (Be careful when writing T . It is
probably safest to write the bob’s velocity in component form.) Find the Lagrange
EOM and show that it is the same as that for a normal, nonaccelerating pendulum,
except that g has been replaced by g + a. In particular, the angular frequency of
small oscillations is

√
(g + a)/l.

2. Consider a double Atwood machine constructed as follows: A mass 4m is sus-
pended from a string that passes over a massless pulley on frictionless bearings. The
other end of this string supports a second similar pulley, over which passes a second
string supporting a mass of 3m at one end and m at the other. Using two suitable
generalized coordinates, set up the Lagrangian and find the acceleration of the mass
4m when the system is released. Explain why the top pulley rotates even though it
carries equal weights on each side.

3. The figure shows a simple pendulum (mass m, length
l) whose point of support P is attached to the edge of a
wheel (center O, radius R) that is forced to rotate at a fixed
angular velocity ω. At t = 0, the point P is level with O on
the right. Write down the Lagrangian and find the EOM
for the angle φ. [Hint: Be careful writing down T , the K.E.
A safe way to get the velocity right is to write down the
position of the bob at time t, and then differentiate.] Check
that your answer makes sense in the special case ω = 0.
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4. A simple pendulum (mass M and length L) is suspended from a cart (mass m)
that can oscillate on the end of a spring (spring constant k), as shown in the left
figure below. (a) Write the Lagrangian in terms of the two generalized coordinates x
and φ, where x is the extension of the spring from its equilibrium length. Find the
two Lagrange equations. (They’re ugly.) (b) Simplify the equations to the case that
both x and φ are small. (They’re still pretty ugly, and still coupled, but we’ll solve
them in Chapter 11.)

5. The above-right figure is a bird’s-eye view of a smooth horizontal wire hoop that is
forced to rotate at a fixed angular frequency ω about a vertical axis through the point
A. A bead of mass m is threaded on the hoop and is free to move around it, with
its position specified by the angle φ that it makes at the center with the diameter
AB. Find the Lagrangian for this system using φ as your generalized coordinate. Use
the Lagrange EOM to show that the bead oscillates about the point B exactly like
a simple pendulum. What is the frequency of these oscillations if their amplitude is
small?
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6. Consider the cube balanced on a cylinder, as described
in Example 4.7 (page 130). (Immobile cylinder of radius r.
Cube of side 2b can rock but can’t slip. U(θ) = mg[(r +
b) cos θ+rθ sin θ].) Assuming that b < r, use the Lagrangian
approach to find the angular frequency of small oscillations
about the top. The simplest procedure is to make the small-
angle approximations to L before you differentiate to get
Lagrange’s equation. As usual, be careful in writing down
the kinetic energy, which is 1

2
(mv2 + Iθ̇2), where v is the

speed of the CM and I = 2mb2/3 is the moment of inertia
about the CM. The safe way to find v is to write down the
coordinates of the CM and then differentiate.

7. A pendulum is made from a massless spring (force constant k and unstretched
length l0) that is suspended at one end from a fixed pivot O and has a mass m
attached to its other end. The spring can stretch and compress but cannot bend, and
the whole system is confined to a single vertical plane. (a) Write down the Lagrangian
for the pendulum, using as generalized coordinates the usual angle φ and the length r
of the spring. (b) Find the two Lagrange equations of the system and interpret them
in terms of Newton’s second law (Eq. 1.48), Fr = m(r̈− rφ̇2) and Fφ = m(rφ̈+ 2ṙφ̇).
(c) The equations of part (b) cannot be solved analytically in general, but they can be
solved for small oscillations. Do this and describe the motion. [Hint: Let l describe
the equilibrium length of the spring with the mass hanging from it and write r = l+ε.
“Small oscillations” involve only small values of ε and φ, so you can use the small-
angle approximations and drop from your equations all terms that involve powers of
ε or φ (or their derivatives) higher than the first power (also products of ε and φ or
their derivatives). This dramatically simplifies and uncouples the equations.

8. A mass m1 rests on a frictionless horizontal table. Attached to it is a string
which runs horizontally to the edge of the table, where it passes over a frictionless,
small pulley and down to where it supports a mass m2. Use as coordinates x and y
the distances of m1 and m2 from the pulley. These satisfy the constraint equation
f(x, y) = x+ y = const. Write down the two modified Lagrange equations and solve
them (together with the constraint equation) for ẍ, ÿ, and the Lagrange multiplier
λ. Use (Eq. 7.122) (and the corresponding equation in y) to find the tension forces
on the two masses. Verify your answers by solving the problem by the elementary
Newtonian approach.
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9. This is a repeat of HW2/XC7, but now it is a required problem, which you can
solve using the Lagrangian approach. But you’ll need to use a Lagrange multiplier so
that you can solve for the force of constraint imposed by the thread. The trick is to
write a Lagrangian having two coordinates: θ (as indicated on the left figure below)
and Y , the vertical position of the ring. You then include a Lagrange multiplier
term λY to enforce the Y = 0 constraint (which also implies Ẏ = 0 and Ÿ = 0), as
described in §7.10. “The ring will start to rise” implies λ = 0, i.e. the tension in the
string is zero. There are actually two solutions for λ = 0, whose meaning you should
interpret (even though only one of the two solutions describes the rings’ starting to
rise). Here’s the problem as previously stated: A ring of mass M hangs from a thread,
and two beads of mass m slide on it without friction, as shown in the figure. The
beads are released simultaneously from rest (given an infinitesimal kick) at the top
of the ring and slide down opposite sides. Show that the ring will start to rise if
m > 3

2
M , and find the angle θ at which this occurs. [Hint: If M = 0, then cos θ = 2

3
.]

One more hint: you will probably find it helpful to use energy conservation (after
imposing Y ≡ 0) to write θ̇ in terms of cos θ.

10. Two equal masses m, connected by a massless string, hang over two pulleys (of
negligible size), as shown in the above-right figure. The left mass moves in a vertical
line, but the right mass is free to swing back and forth in the plane of the masses
and pulleys. Find the EOM for r and θ, as shown. Assume that the left mass starts
at rest, and the right mass undergoes small oscillations with angular amplitude ε
(ε� 1). What is the initial average acceleration (averaged over a few periods) of the
left mass? In which direction does it move?

Remember online feedback at positron.hep.upenn.edu/q351
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XC1. Optional/extra-credit. Two equal masses, m1 = m2 = m, are joined by a
massless string of length L that passes through a hole in a frictionless horizontal table.
The first mass slides on the table while the second hangs below the table and moves
up and down in a vertical line. (a) Assuming the string remains taut, write down the
Lagrangian for the system in terms of the polar coordinates (r, φ) of the mass on the
table. (b) Find the two Lagrange equations and interpret the φ equation in terms of
the angular momentum ` of the first mass. (c) Express φ̇ in terms of ` and eliminate
φ̇ from the r equation. Now use the r equation to find the value r = r0 at which the
first mass can move in a circular path. Interpret your answer in Newtonian terms.
(d) Suppose the first mass is moving in this circular path and is given a small radial
nudge. Write r(t) = r0 + ε(t) and rewrite the r equation in terms of ε(t) dropping all
powers of ε(t) higher than linear. Show that the circular path is stable and that r(t)
oscillates sinusoidally about r0. What is the frequency of its oscillations?

XC2. Optional/extra-credit. In Problem 3, one might expect that the rotation of
the wheel would have little effect on the pendulum, provided the wheel is small and
rotates slowly. (a) Verify this expectation by solving the EOM numerically, with the
following numbers: Take g = l = 1 (so the natural frequency

√
g/l is also 1). Take

ω = 0.2, so that the wheel’s rotational frequency is small compared to the natural
frequency of the pendulum; and take the radius R = 0.2, significantly less than the
length of the pendulum. As initial conditions take φ = 0.2 and φ̇ = 0 at t = 0,
and make a graph of your solution φ(t) for 0 < t < 20. Your graph should resemble
the sinusoidal oscillations of an ordinary simple pendulum. Does the period look
correct? (b) Now graph φ(t) for 0 < t < 100 and notice that the rotating support
does make a small difference, causing the amplitude of the oscillations to grow and
shrink periodically. Comment on the period of these small fluctuations.

XC3. Optional/extra-credit. In Example 7.7 (page 264), we saw that the
bead on a spinning hoop can make small oscillations about its nonzero stable equi-
librium points that are approximately sinusoidal, with frequency (as in Eq. 7.80)
Ω′ =

√
ω2 − g2/(ωR)2. Investigate how good this approximation is by solving the

EOM (Eq. 7.73) numerically and then plotting both your numerical solution and the
approximate solution θ(t) = θ0 +A cos(Ω′t− δ) on the same graph. Use the following
numbers: g = R = 1 and ω2 = 2, and initial conditions θ̇(0) = 0 and θ(0) = θ0 + ε0,
where ε0 = 1◦. Repeat with ε0 = 10◦. Comment on your results.
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XC4. Optional/extra-credit. The standard pendulum
frequency

√
g/` holds only for small oscillations. The fre-

quency becomes smaller as the amplitude grows. It turns
out that if you want to build a pendulum whose frequency
is independent of the amplitude, you should hang it from
the cusp of a cycloid of a certain size, as shown in the fig-
ure. As the string wraps partially around the cycloid, the
effect is to decrease the length of string in the air, which in
turn increases the frequency back up to a constant value.
In more detail:

A cycloid is the path taken by a point on the rim of a rolling wheel. The upside-down
cycloid in the figure can be parametrized by (x, y) = R(θ − sin θ,−1 + cos θ), where
θ = 0 corresponds to the cusp. Consider a pendulum of length 4R hanging from the
cusp, and let α be the angle the string makes w.r.t. vertical, as shown.

(a) In terms of α, find the value of the parameter θ associated with the point where
the string leaves the cycoid.

(b) In terms of α, find the length of string touching the cycoid.

(c) In terms of α, find the Lagrangian.

(d) Show that the quantity sinα undergoes simple harmonic motion with frequency√
g/(4R), independent of the amplitude.

(e) In place of parts (c) and (d), solve the problem again by using F = ma. This
actually gives a much quicker solution!

Remember online feedback at positron.hep.upenn.edu/q351

phys351/hw04.tex page 6 of 6 2018-02-08 15:44


