
Physics 351, Spring 2018, Homework #5.
Due at start of class, Friday, February 23, 2018

Please write your name only on the VERY LAST PAGE of your home-
work submission, so that we don’t notice whose paper we’re grading until
we get to the very end.

When you finish this homework, remember to tell me how the homework went for
you, by visiting the feedback page at

positron.hep.upenn.edu/q351

1. A mass m is free to slide on a frictionless table and is connected, via a string that
passes through a hole in the table, to a mass M that hangs below. Assume that M
moves in a vertical line only, and assume that the string always remains taut. (a) Find
the EOM for r and for θ as shown in the left figure below. (b) Under what condition
does m undergo circular motion? (c) What is the frequency of small oscillations (in
the variable r) about this circular motion (i.e. if the orbit is perturbed slightly w.r.t.
the circular motion)?

2. An “inverted pendulum” consists of a mass m at the top end of a massless stick of
length l. The bottom end of the stick is made to oscillate vertically with a position
given by y(t) = A cos(ωt), where A� l, as shown in the above-right figure. It turns
out that if ω is large enough, and if the pendulum is initially nearly upside-down,
then surprisingly it will not fall over as time goes by. Instead, it will (sort of) oscillate
back and forth around the vertical position. (a) Find the EOM for the angle θ of the
pendulum (measured relative to the position in which the stick is perfectly vertical,
with m on top). [[You don’t have to do part (b) of this problem if you don’t want
to. If you do complete both (a) and (b) correctly, you can earn 5/4 points for this
problem.]] (b) By numerically integrating the EOM under suitable conditions, show
that the pendulum stays up (and moves back and forth about θ = 0) if ω >

√
2gl/A,

but falls over if ω <
√

2gl/A. (I got this to work out nicely using l = 1, A = 0.01,
g = 9.8, θ0 = 0.001.) You can just show θ(t) for a couple of points below and a couple
of points above the critical frequency.
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3. A particle slides on the inside surface of a frictionless cone. The cone is fixed with
its tip on the ground and its axis vertical. The half-angle of the cone is α, as shown
in the left figure below. Let ρ be the distance from the particle to the axis, and let
φ be the angle around the cone. (a) Find the EOM for ρ and for φ. (One EOM will
identify a conserved quantity, which you can plug into the other EOM.) (b) If the
particle moves in a circle of radius ρ = r0, what is the frequency ω of this motion?
(c) If the particle is then perturbed slightly from this circular motion, what is the
frequency Ω of the oscillations about the radius ρ = r0? (d) Under what conditions
does Ω = ω?

4. A bead is free to slide along a frictionless hoop of radius r. The plane of the
hoop is horizontal, and the center of the hoop travels in a horizontal circle of radius
R, with constant angular speed ω, about a given point, as shown in the above-right
figure. (a) Find the EOM for angle θ. (b) Find the frequency of small oscillations
about the point of stable equilibrium.

5. Let’s modify the situation of Problem 4 so that the plane of the hoop is now
vertical (so “top view” becomes “side view”), and the center of the hoop travels (in
this vertical plane) in a circle of radius R with constant angular speed ω about the
indicated point. (a) Find the EOM for angle θ. (b) For large ω (which implies small
θ), find the amplitude of the “particular” solution with frequency ω. [You have to
use your knowledge of chapter 5 for part (b).] (c) What happens if r = R?

6. Consider the action, from t = 0 to t = 1, of a ball dropped from rest. From the E-L
equation (or from F = ma), we know that y(t) = −gt2/2 yields a stationary value
of the action. Show explicitly that the particular function y(t) = −gt2/2 + εt(t− 1)
yields an action that has no first-order dependence on ε.

7. The “spherical pendulum” is just a simple pendulum that is free to move in any
sideways direction. (By contrast a “simple pendulum” — unqualified — is confined
to a single vertical plane.) The bob of a spherical pendulum moves on a sphere,
centered on the point of support with radius r = R, the length of the pendulum. A
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convenient choice of coordinates is spherical polars, r, θ, φ, with the origin at the
point of support and the polar axis pointing straight down. The two variables θ and
φ make a good choice of generalized coordinates. (a) Find the Lagrangian and the
EOM for θ and for φ. (b) Explain what the φ EOM tells us about the z component of
angular momentum, `z. (c) For the special case that φ = const, state what familiar
situation the θ EOM describes. (d) Use the φ EOM to eliminate φ̇ in favor of `z in
the θ EOM and discuss the existence of an angle θ0 at which θ can remain constant.
Why is this motion called a conical pendulum?

8. Let F = F (x, t) be any function of coordinate x and time t, of a system with
Lagrangian L(x, ẋ, t). Prove that the two Lagrangians L and L′ = L + dF/dt give
exactly the same equations of motion. (Note that this theorem would NOT hold if
F were allowed to depend on ẋ. Note also that this result generalizes easily to n
coordinates, but I left it at one coordinate to simplify the math.)

9. Verify that the positions of two particles can be written in terms of the CM and
relative positions as r1 = R + m2r/M and r2 = R −m1r/M . Hence confirm that
the total KE of the two particles can be expressed as T = 1

2
MṘ2 + 1

2
µṙ2, where µ

denotes the reduced mass µ = m1m2/M .

10. Consider two particles of equal mass, m1 = m2, attached to each other by a light
straight spring (force constant k, natural length L) and free to slide over a frictionless
horizontal table. (a) Write down L in terms of the coordinates r1 and r2, and rewrite
it in terms of the CM and relative positions, R and r, using polar coordinates (r, φ)
for r. (b) Write down and solve the Lagrange equations for the CM coordinates X,
Y . (c) Write down the Lagrange equations for r and φ. Solve these for the two
special cases that r remains constant and that φ remains constant. Describe the
corresponding motions. In particular, show that the frequency of oscillations in the
second case is ω =

√
k/µ, where µ = m1m2/(m1 +m2) = m1/2.

Remember online feedback at positron.hep.upenn.edu/q351

XC00. Optional/extra-credit. If there are extra-credit problems from earlier
homeworks that you didn’t have time to do sooner, you can feel free to turn them in
with HW5 for full credit. Just clearly indicate which problem you’re solving.

XC1. Optional/extra-credit. Let the horizontal plane by the x-y plane. A bead
of mass m slides with speed v along a curve described by the function y = f(x).
What force does the curve apply to the bead? (Ignore gravity.)

XC2. Optional/extra-credit. Consider a massless wheel of radius R mounted on
a frictionless horizontal axis. A point mass M is glued to the edge, and a massless
string is wrapped several times around the perimeter and hangs vertically down with
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a mass m suspended from its bottom end. (See left figure below.) Initially I am
holding the wheel with M vertically below the axle. At t = 0, I release the wheel,
and m starts to fall vertically down. (a) Write down L = T − U as a function of
the angle φ through which the wheel has turned. Find the EOM and show that,
provided m < M , there is one position of stable equilibrium. (b) Assuming m < M ,
sketch the potential energy U(φ) for −π < φ < 4π and use your graph to explain
the equilibrium positions you found. (c) Because the EOM cannot be solved in terms
of elementary functions, you are going to solve it numerically. This requires that
you choose numerical values for the various parameters. Take M = g = R = 1 (this
amounts to a convenient choice of units) and m = 0.7. Before solving the EOM, make
a careful plot of U(φ) and predict the kind of motion expected when M is released
from rest at φ = 0. Now solve the EOM for 0 < t < 20 and verify your prediction.
(d) Repeat part (c), but with m = 0.8.

XC3. Optional/extra-credit. Two equal masses are glued to a massless hoop of
radius R that is free to rotate about its center in a vertical plane. The angle between
the masses is 2θ, as shown in the right figure above. Find the frequency of small
oscillations. (This is an easy XC problem.)

XC4. Optional/extra-credit. Consider a particle of mass m and charge q moving
in a uniform constant magnetic field B that points in the z direction. (a) Prove that
B can be written as B = ∇ × A with A = 1

2
B × r. Prove equivalently that in

cylindrical polar coordinates, A = 1
2
Bρφ̂. (b) Write

L(r, ṙ, t) =
1

2
mṙ2 − q(V − ṙ ·A)

in cylindrical polar coordinates and find the three corresponding Lagrange equations.
(c) Describe in detail those solutions of the Lagrange equations for which ρ is a
constant.

Remember online feedback at positron.hep.upenn.edu/q351
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