
Physics 351, Spring 2018, Homework #6.
Due at start of class, Friday, March 2, 2018

Please write your name only on the VERY LAST PAGE of your home-
work submission, so that we don’t notice whose paper we’re grading until
we get to the very end.

When you finish this homework, remember to tell me how the homework went for
you, by visiting the feedback page at

positron.hep.upenn.edu/q351

1. Although the main topic of Chapter 8 is the motion of two particles subject to no
external forces, many of the ideas (e.g. L = Lcm+Lrel as in (Eq. 8.13)) extend easily to
more general situations. To illustrate this, consider the following: Two masses m1 and
m2 move in a uniform gravitational field g and interact via a potential energy U(r).
(a) Show that L can be decomposed as in (Eq. 8.13). (b) Write down Lagrange’s
equations for the three CM coordinates X, Y , Z and describe the motion of the
CM. Write down the three Lagrange equations for the relative coordinates and show
clearly that the motion of r is the same as that of a single particle of mass equal to
the reduced mass µ, with position r and potential energy U(r).

2. Two particles whose reduced mass is µ interact via a potential energy U = 1
2
kr2,

where r is the distance between them. (a) Make a sketch showing U(r), the centrifugal
potential energy Ucf(r), and the effective potential energy Ueff(r). (Treat the angular
momentum ` as a known, fixed constant.) (b) Find the “equilibrium” separation r0,
the distance at which the two particles can circle each other with constant r. (c) By
Taylor-expanding Ueff(r) to order (r − r0)2, find the frequency of small oscillations
about the circular orbit if the particles are disturbed slightly from the “equilibrium”
separation r0.

3. Consider a particle of reduced mass µ orbiting in a central force with U = krn

where kn > 0. (a) Explain what the condition kn > 0 tells us about the force. Sketch
the effective potential energy Ueff for the cases that n = 2, n = −1, and n = −3.
(b) Find the radius r0 at which the particle (with given angular momentum `) can
orbit at a fixed radius. For what values of n is this circular orbit stable? Do your
sketches confirm this conclusion? (c) For the stable case, show that the period of
small oscillations about the circular orbit is τosc = τorb/

√
n+ 2. Argue that if

√
n+ 2

is a rational number, these orbits are closed. Sketch them for the cases that n = 2,
n = −1, and n = 7.
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4. We have proved in (Eq. 8.49) that any Kepler orbit can be written in the form
r(φ) = c/(1 + ε cosφ), where c > 0 and ε ≥ 0. For the case that 0 ≤ ε < 1, rewrite
this equation in rectangular coordinates (x, y) and prove that the equation can be
cast in the form

(x+ d)2

a2
+
y2

b2
= 1

with a = c/(1− ε2), b = c/
√

1− ε2, and d = aε.

5. An earth satellite is observed at perigee to be 250 km above the earth’s surface and
traveling at about 8500 m/s. Find the eccentricity of its orbit and its height above
the earth’s surface at apogee. Useful data: the earth’s radius is Re ≈ 6.4 × 106 m,
and GMe/R

2
e = g.

6. At time t0 a comet is observed at radius r0 traveling with speed v0 at an acute
angle α to the line from the comet to the sun. Put the sun at the origin O, with the
comet on the x axis (at t0) and its orbit in the xy plane, and then show how you could
calculate the parameters of the orbital equation in the form r = c/[1 + ε cos(φ− δ)].
Do so for the case that r0 = 1.0 × 1011 m, v0 = 45 km/s, and α = 50◦. [The sun’s
mass is about 2.0× 1030 kg, and G = 6.67× 10−11 N m2

kg2 .]

7. A particle of mass m moves with angular momentum ` in the field of a fixed force
center with

F (r) = − k
r2

+
λ

r3

where k > 0 and λ > 0. (a) Write down the transformed radial equation

u′′(φ) = −u(φ)− µ

`2 u(φ)2
F

(Eq. 8.41) and prove that the orbit has the form

r(φ) =
c

1 + ε cos(βφ)

where c, β, and ε are positive constants. (b) Find c and β in terms of the given
parameters, and describe the orbit for the case that 0 < ε < 1. (c) For what values
of β is the orbit closed? What happens to your results as λ→ 0?

8. A particle travels in a parabolic orbit in a planet’s gravitational field and skims
the surface at its closest approach. The (spherical) planet has uniform mass density
ρ. Relative to the center of the planet, what is the angular velocity of the particle as
it skims the surface?

9. The derivation of mr̈ = F + 2mṙ ×Ω + m(Ω× r)×Ω (Eq. 9.34), for Newton’s
2nd law in a rotating frame, assumes that angular velocity Ω is constant. Show that
if Ω̇ 6= 0 then there is a third “fictitious force,” sometimes called the azimuthal force,
on the RHS of (9.34) equal to mr × Ω̇.
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10. In this problem you will prove (Eq. 9.34) using the Lagrangian approach. As
usual, the Lagrangian method is in many ways easier than the Newtonian (except for
some vector gymnastics), but is perhaps less insightful. Let S be a noninertial frame
rotating with constant angular velocity Ω relative to the inertial frame S0. Let both
frames have the same origin, O = O0. (a) Find L = T −U in terms of the coordinates
r and ṙ of S. [Remember first to evaluate T in the inertial frame. Remember also
that v0 = v + Ω× r.] (b) Show that the three Lagrange equations reproduce (9.34)
precisely.

11. On a certain spherically-symmetric planet, the free-fall acceleration has magni-
tude g = g0 at the north pole and g = λg0 (with 0 ≤ λ ≤ 1) at the equator. Find
g(θ), the free-fall acceleration at colatitude θ as a function of θ.

Remember online feedback at positron.hep.upenn.edu/q351

XC00. Optional/extra-credit. If there are extra-credit problems from HW3,4,5
that you didn’t have time to do sooner, you can feel free to turn them in with HW6
for full credit. Just clearly indicate for us which problem you’re solving.

XC1. Optional/extra-credit. Sometimes in the Calculus of Variations we want
to extremize an integral subject to the constraint that another integral have a given
(constant) value. Any such problem is called an isoperimetric problem. (See e.g.
Mary Boas, 3ed, §9.6.) The original and most famous example is Queen Dido’s
Problem: of all the closed plane curves of a given perimeter, which one encloses the
largest area? To solve this problem, we must maximize the area,

∫
y dx, subject to

the condition that the arc length
∫

ds has the given value `. Let

I =

∫ x2

x1

F (x, y, y′) dx

be the integral we want to make stationary, while the integral (with same integration
variable and same limits)

J =

∫ x2

x1

G(x, y, y′) dx

is to have a given constant value. (So the allowed varied paths must be paths for
which J has the given value.) Using the Lagrange multiplier method, it can be shown
that ∫ x2

x1

(F (x, y, y′) + λG(x, y, y′)) dx

should be stationary, i.e. that F + λG should satisfy the Euler-Lagrange equation,
where the Lagrange multiplier λ is a constant. Using F = y andG =

√
1 + (y′)2, show

that the solution to Queen Dido’s problem is an arc of a circle, (x+c)2+(y+c′)2 = λ2,
passing through the two given points.

phys351/hw06.tex page 3 of 6 2018-02-21 10:28



XC2. Optional/extra-credit. A uniform flexible chain of given length is sus-
pended at given points (x1, y1) and (x2, y2). Using the “isoperimetric” method of
Problem XC1, find the curve y(x) that minimizes the chain’s gravitational potential
energy, subject to the constraint that its length be the given value. You will find
a catenary (cosh) that looks like the solution to hw04/q8 but with a vertical offset:
y = y0 +C cosh((x−x0)/C), which makes more physical sense than without the offset
y0.

XC3. Optional/extra-credit. Consider a particle with mass m and angular mo-
mentum ` in the field of a central force F = −k/r5/2. To simplify your equations,
choose units for which m = ` = k = 1. (a) Find the value r0 at which Ueff is mini-
mum and make a graph of Ueff(r) for 0 < r ≤ 5r0. (Choose your scale so that your
graph shows the interesting part of the curve.) (b) Assuming now that the particle
has energy E = −0.1, find an accurate value of rmin, the particle’s distance of closest
approach to the force center. (Use e.g. Mathematica to solve the relevant equation
numerically.) (c) Assuming that the particle is at r = rmin when φ = 0, use (e.g.)
NDSolve in Mathematica to solve the transformed radial equation (Eq. 8.41)

u′′(φ) = −u(φ)− µ

`2 u(φ)2
F

and find the orbit in the form r = r(φ) for 0 ≤ φ ≤ 7π. Graph the orbit. Does it
appear to be closed?

XC4. Optional/extra-credit. A particle moves in a potential given by U(r) =
−U0e

−λ2r2 . (a) Given the angular momentum `, find the radius of the stable circular
orbit. An implicit equation is fine. (b) It turns out that if ` is too large, then no
circular orbit exists. What is the largest value of ` for which a circular orbit does
in fact exist? If r0 is the radius of the circle in this cutoff case, what is the value of
Ueff(r0)? (c) To check that your answer for part (b) makes sense, make a graph of
Ueff(r) for ` slightly smaller than `max and for ` slightly larger than `max, and interpret
the condition for the existence of a stable circular orbit.

XC5. Optional/extra-credit. A particle of mass m moves with angular momen-
tum ` about a fixed force center with F (r) = k/r3 where k can be positive or negative.
(a) Sketch the effective potential energy Ueff for various values of k and describe the
various possible kinds of orbit. (b) Write down and solve the transformed radial
equation (8.41)

u′′(φ) = −u(φ)− µ

`2 u(φ)2
F

and use your solutions to confirm your predictions from part (a).

XC6. Optional/extra-credit. Consider the motion of two particles subject to
a repulsive inverse-square force (for example, two positive charges). Show that this
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system has no states with E < 0 (as measured in the CM frame), and that in all
states with E > 0, the relative motion follows a hyperbola. Sketch a typical orbit.
[You can follow closely the analysis of §8.6-8.7 except that you must reverse the force.
Probably the simplest way to do this is to change the sign of γ in (Eq. 8.44) and all
subsequent equations (so that F (r) = +γ/r2) and then keep γ itself positive. Assume
` 6= 0.]

XC7. Optional/extra-credit. Here is a more general form of the virial theorem
that applies to any periodic orbit of a particle. (a) Find the time derivative of the
quantity G = ~r · ~p and, by integrating from time 0 to t, show that

G(t)−G(0)

t
= 2 〈T 〉+

〈
~F · ~r

〉
where ~F is the net force on the particle and 〈f〉 denotes the average over time of
any quantity f . (b) Explain why, if the particle’s orbit is periodic and we make
t sufficiently large, we can make the left-hand side of this equation as small as we
please. That is, the LHS→ 0 as t→∞. (c) Use this result to prove that if ~F comes
from the potential energy U = krn, then 〈T 〉 = (n/2) 〈U〉, if now 〈f〉 denotes the
time average over a very long time.

XC8. Optional/extra-credit. The center of a long frictionless rod is pivoted
at the origin and the rod is forced to rotate at a constant angular velocity Ω in a
horizontal plane. Write down the EOM for a bead that is threaded on the rod, using
the coordinates x and y of a frame that rotates with the rod (with x along the rod
and y perpendicular to it). Solve for x(t). What is the role of the centrifugal force?
What of the Coriolis force? (How do the normal force and the Coriolis force relate to
one another?)

XC9. Optional/extra-credit. A particle of mass m is confined to move, without
friction, in a vertical plane, with axes x horizontal and y vertically up. The plane is
forced to rotate with constant angular velocity Ω about the y axis. Find the equations
of motion for x and y, solve them, and describe the possible motions.
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XC10. Optional/extra-credit. A spacecraft in a circular orbit wishes to transfer
to another circular orbit of one-quarter the radius by means of a tangential thrust
to move into an elliptical orbit and a second tangential thrust at the opposite end of
the ellipse to move into the desired circular orbit. (The picture looks like Figure 8.13
but run backwards.) Find the thrust factors required and show that the speed in the
final orbit is two times greater than the initial speed.

Remember online feedback at positron.hep.upenn.edu/q351
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