
Physics 351, Spring 2018, Homework #10.
Due at start of class, Friday, April 6, 2018

Please write your name on the LAST PAGE of your homework sub-
mission, so that we don’t notice whose paper we’re grading until we
get to the very end.

When you finish this homework, remember to tell me how the homework went
for you, by visiting the feedback page at

positron.hep.upenn.edu/q351

1. Here is a problem that is a weird variation of an Atwood’s machine. The
goal is to find the accelerations of m1 and m2, as shown in the left figure below.
Also find the tension in the string! Assume that the pulleys are massless and
frictionless, so that the tension in the string is constant. The preferred way to
solve this problem is in the Lagrangian framework, using a Lagrange multiplier;
the constraint can be expressed at 2x+ y = L, the total length of the string.

2. A tube of mass M and length ` is free to swing by a pivot at one end. (Use
the moment of inertia of a uniform thin rod rotating about one end.) A mass m
is positioned inside the tube at this end. The tube is held horizontal and then
released. (See above-right figure.) Let θ be the angle of the tube w.r.t. the
horizontal, and let x be the distance the mass has traveled along the tube. Find
the Lagrange equations of motion for θ and x, then write them in terms of θ
and η ≡ x/` (the fraction of the distance along the tube). These equations can
only be solved numerically, and you must pick a numerical value for the ratio
r ≡ m/M in order to do this. Use Mathematica (or your favorite alternative) to
find the value of η when the tube is vertical (θ = π/2). Give this value of η for a
few values of r.
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3. [This problem can take a very long time to puzzle over, but in the end
you’ll understand much better what Taylor means by Ωs and Ωb.] We saw in
§10.8 that in the free precession of an axially symmetric body (λ1 = λ2) the
three vectors ê3 (the symmetry axis), ω, and L lie in a plane. As seen in the
body frame, ê3 is fixed, and ω and L precess around ê3 with angular velocity
Ωb = ω3(λ1−λ3)/λ1. As seen in the space frame, L is fixed, and ω and ê3 precess
around L with angular frequency Ωs. In this [very lengthy!] problem you will find
three equivalent expressions for Ωs. (a) Argue that Ωs = Ωb + ω. [Remember
that relative angular velocities add like vectors.] (b) Bearing in mind that Ωb

is parallel to ê3, prove that Ωs = ω sinα/ sin θ, where α is the angle between ê3

and ω, and θ is the angle between ê3 and L. (See Figure 10.9.) [Hint: look
at the equation from part (a) and consider the component perpendicular to ê3.]
(c) Thence prove that

Ωs = ω
sinα

sin θ
=

L

λ1

= ω

√
λ2

3 + (λ2
1 − λ2

3) sin2 α

λ1

4. Consider the rapid steady precession of a symmetric top predicted in connec-
tion with (Eq. 10.112). (a) Show that in this motion the angular momentum L
must be very close to the vertical. [Hint: Use (Eq. 10.100) to write down the
horizontal component Lhor of L. Show that if φ̇ is given by the right side of
(Eq. 10.112), Lhor is exactly zero.] (b) Use this result to show that the rate of
precession Ω given in (Eq. 10.112) agrees with the free precession rate Ωs found
in (Eq. 10.96).

5. In the discussion of steady precession of a top in §10.10, the rates Ω at
which steady precession can occur were determined by the quadratic equation
(Eq. 10.110). In particular, we examined this equation for the case that ω3 is
very large. In this case you can write the equation as aΩ2 + bΩ + c = 0 where
b is very large. (a) Verify that when b is very large, the two solutions of this
equation are approximately −c/b (which is small) and −b/a (which is large).
What precisely does the condition “b is very large” entail? (You should find a
dimensionless ratio � 1.) (b) Verify that these give the two solutions claimed in
(Eq. 10.111) and (Eq. 10.112).

6. [Here’s a problem from a final exam 4 or 5 years ago.] In a “rolling mill,”
grain is ground by a disk-shaped millstone that rolls in a circle on a flat surface
and is driven by a vertical shaft. Assume that the millstone is a uniform disk of
radius b and negligible thickness. (λ3 = 1

2
mb2. What is λ1 = λ2, given that this

object is planar?) Also assume that the wheel cannot tip, so it always remains
perpendicular to the ground. The wheel rolls without slipping along a circle of
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radius R with angular velocity Ω as indicated in the figure below (left). Show that
the normal force that the ground exerts on the wheel is Mg + 1

2
MbΩ2. Because

of the angular momentum of the millstone, the contact force with the surface
can be much larger than the weight of the wheel, which is what makes this an
effective way to grind grain.

7. When you spin a coin around a vertical diameter on a table, it will lose
energy and go into a wobbling motion, whose frequency increases as the coin’s
angle w.r.t. horizontal decreases. Consider the moment when the coin makes an
angle θ w.r.t. the horizontal surface of the table. Assume that the CM of the
coin is motionless and that the contact point moves along a circle on the table,
as shown in the left figure above (right). Let the radius of the coin be R, and
let Ω be the angular velocity of the motion of the contact point. Assume that
the coin rolls without slipping. (a) Show that the angular velocity of the coin is
ω = Ω sin θ ê1, where ê1 points upward along the coin, diametrically away from
the contact point. (b) Show that Ω = 2

√
g/(R sin θ).

8. [This problem is adapted from a problem on the final exam I took for the
analogous course in fall 1990.] A uniform, infinitesimally thick, square plate
of mass m and side length d is allowed to undergo torque-free rotation. At
time t = 0, the normal to the plate, ê3, is aligned with ẑ, but the angular
velocity vector ω deviates from ẑ by a small angle α. The figure below depicts
the situation at time t = 0, at which time ê1 = x̂, ê2 = ŷ, ê3 = ẑ, and
ω = ω(cosαẑ + sinαx̂).

(a) Show that the inertia tensor has the form I = I0

 1 0 0
0 1 0
0 0 2

 and find the
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constant I0. (b) Calculate the angular momentum vector L at t = 0. (c) Draw
a sketch showing the vectors ê3, ω, and L at t = 0. Be sure that the relative
orientation of L and ω makes sense. This relative orientation is different for
frisbee-like (“oblate”) objects (λ3 > λ1) than it is for the American-football-like
(“prolate”) object (λ3 < λ1) drawn on Taylor’s page 400. (d) Draw and label the
“body cone” and the “space cone” on your sketch. (e) Calculate the precession
frequencies Ωbody and Ωspace. Indicate the directions of the precession vectors
Ωbody and Ωspace on your drawing. (You puzzled through these directions when
you solved problem 3.) (f) You argued in problem 3 that Ωspace = Ωbody + ω.
Verify (by writing out components) that this relationship holds for the Ωspace

and Ωbody that you calculate for t = 0. (g) Find the maximum angle between
ẑ and ê3 during subsequent motion of the plate. Show that in the limit α � 1,
this maximum angle equals α (dropping terms O(α2) and higher). (h) When
is this maximum deviation first reached? (i) As a check, verify (for the α � 1
limit) that Feynman indeed misremembered which way the factor of two had
gone in this anecdote about a plate tossed through the air in a Cornell cafeteria:
positron.hep.upenn.edu/p351/feynman

Remember online feedback at positron.hep.upenn.edu/q351

XC1. Optional/extra-credit. An important special case of the motion of a
symmetric top occurs when it spins about a vertical axis. Analyze this motion
as follows: (a) By inspecting the effective PE (Eq. 10.114), show that if at any
time θ = 0, then L3 and Lz must be equal. (b) Set Lz = L3 = λ3ω3 and then
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make a Taylor expansion of Ueff(θ) about θ = 0 to terms of order θ2. (c) Show
that if ω3 > ωmin = 2

√
MgRλ1/λ2

3, then the position θ = 0 is stable, but if
ω3 < ωmin it is unstable. (In practice, friction slows the top’s spinning. Thus
with ω3 sufficiently fast, the vertical top is stable, but as it slows down the top
will eventually lurch away from the vertical when ω3 reaches ωmin.)

XC2. Optional/extra-credit. [Computer] The nutation of a top is controlled
by the effective potential energy (Eq. 10.114). Make a graph of Ueff(θ) as follows:
(a) First, since the second term of Ueff(θ) is a constant, you can ignore it. Next,
by choice of your units, you can take MgR = 1 = λ1. The remaining parameters
Lz and L3 are genuinely independent parameters. To be definite set Lz = 10 and
L3 = 8 and plot Ueff(θ) as a function of θ. (b) Explain clearly how you would use
your graph to determine the angle θ0 at which the top could precess steadily with
θ = constant. Find θ0 to three significant figures. (c) Find the rate of this steady
precession, Ω = φ̇, as given by (Eq. 10.115). Compare with the approximate
value of Ω given by (Eq. 10.112).

XC3. Optional/extra-credit. Do Taylor’s problem 10.33 (page 412), which is
too long to retype here. It involves deriving expressions for T and for L.

XC4. Optional/extra-credit. Consider a rotating reference frame such as a
frame fixed on the earth’s surface. A particle is thrown vertically up with initial
speed v0, reaches a maximum height, and falls back to the ground. Show that
the Coriolis deflection when it reaches the ground is four times as large as and in
the opposite direction from the Coriolis deflection when it is dropped from rest
at the same maximum height. Can you explain why?

XC5. Optional/extra-credit. Assume that a piece of toast is a rigid uniform
square of side length `. You butter the toast and then drop it from a height H
above a table; the table is a height h above the floor. The toast starts off parallel
to the table, and as it falls, it clips the edge of the table and collides elastically,
causing the toast to start to rotate. You want to find the value of H, in terms of
h and `, that leads to the sad situation in which the toast makes exactly one-half
revolution and lands on the floor butter-side-down. Show that H = π2`2

6 (6h−π`) .

[Hint: with a clever choice of origin, you can argue that the angular momentum
of the toast is conserved during the collision with the table.]

XC6. Optional/extra-credit. (a) A small ball of radius r and uniform density
rolls without slipping at the bottom of a fixed cylinder of radius R � r. Show

that the frequency of small oscillations is ω =
√

5g
7R

. [You’ll need I = 2
5
Mr2 for
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a uniform sphere about an axis through its center.] (b) Generalize your result
for the case where the sphere’s density is not uniform (but is still spherically
symmetric), so its moment of inertia is given by I = βMr2.

XC7. Optional/extra-credit. Consider a top made of a wheel with all its mass
on the rim. A massless rod (perpendicular to the plane of the wheel) connects
the CM to a pivot. Initial conditions have been set up so that the top undergoes
precession, with the rod always horizontal. In the language of the figure below
(Morin’s Fig. 9.30), we may write the angular velocity of the top as ω = Ωẑ+ω′x̂3

(where x̂3 = ê3 is horizontal here). Consider things in the frame rotating around
the ẑ axis with angular speed Ω. In this frame, the top spins with angular speed
ω′ around its fixed symmetry axis. Therefore, in this frame we must have τ = 0,
because L is constant. Verify explicitly that τ = 0 (calculated w.r.t. the pivot)
in this rotating frame (you will need to find the relation between ω′ and Ω).
In other words, show that the torque due to gravity is exactly canceled by the
torque due to the Coriolis force (you can quickly show that the centrifugal force
provides no net torque). Remember that HW09/XC3 implies a Coriolis torque
of magnitude mω′Ωr2.

Remember online feedback at positron.hep.upenn.edu/q351
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