
Physics 351, Spring 2018, Homework #11.
Due at start of class, Friday, April 13, 2018

Please write your name on the LAST PAGE of your homework sub-
mission, so that we don’t notice whose paper we’re grading until we
get to the very end.

When you finish this homework, remember to tell me how the homework went
for you, by visiting the feedback page at

positron.hep.upenn.edu/q351

1. [Here’s a problem that appeared on a midterm exam 4 or 5 years ago; the last
two parts were extra-credit on the exam, but you have to solve them!] Consider
the double pendulum consisting of two bobs confined to move in a plane. The
rods are of equal length `, and the bobs have equal mass m. The generalized
coordinates used to describe the system are θ1 and θ2, the angles that the rods
make with the vertical (see left figure below). (a) Write the Lagrangian for
the system. (This could be an opportunity to practice writing (v1 + v2)2 =
v2

1 + v2
2 + 2v1 ·v2.) (b) Next, simplify your Lagrangian from part (a) by assuming

that angles θ1 and θ2 are both small. Keep terms up to second order in the angles,
the angular velocities, and their products. (c) Find the two Lagrange equations
of motion, which will be a set of coupled, linear differential equations. (d) Solve
the equations of motion (e.g. using the techniques of Chapter 11).

2. [Here’s another problem from a midterm exam 4 or 5 years ago; the last
part was extra-credit on the exam.] A block of mass M moves on a frictionless
horizontal rail. A pendulum of length L and mass m hangs from the block.
(See right figure above.) Let x be the displacement of the block, and let θ be
the angular displacement of the pendulum w.r.t. the vertical. (a) Write the
Lagrangian for the system. (Another possible opportunity to write (v1 + v2)2 =
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v2
1 + v2

2 + 2v1 · v2 ?) (b) Which of the coordinates is ignorable (“cyclic”)? What
is the associated conserved quantity? This is an example of what conservation
law? (c) Find the Lagrange equations of motion for the system. (d) Simplify the
equations of motion found in part (c) for the case of small oscillations (where you
can discard any terms of second order or higher in the displacements, velocities,
or their products). (e) Solve the system of differential equations from part (d)
and determine the most general motion of the system. (Your solution should
have four arbitrary constants. Using the results of part (b) should help you to
simplify the problem.)

3. Hamiltonian treatment of the symmetric top. [Here’s a problem that appeared
on a previous year’s final exam.] Consider a symmetric top (λ1 = λ2) whose tip
has a fixed location in space. Using the Euler angles φ, θ, and ψ (whose detailed
definitions are not needed for you to solve this problem) to represent the top’s
orientation, the top’s Lagrangian can be written as

L =
1

2
λ1φ̇

2 sin2 θ +
1

2
λ1θ̇

2 +
1

2
λ3(ψ̇ + φ̇ cos θ)2 −MgR cos θ

where M is the mass of the top and R is the distance from the contact point
to the top’s CoM. λ3 is the moment of inertia for the top’s symmetry axis, and
λ1 is the moment of inertia for the other two principal axes. (a) Calculate the
three generalized momenta, pφ, pθ, and pψ. (b) The simplest way to construct
the Hamiltonian is to realize that the coordinates are natural, so H = T + U .
Use this to show that the Hamiltonian is given by

H =
(pφ − pψ cos θ)2

2λ1 sin2 θ
+

p2
θ

2λ1

+
p2
ψ

2λ3

+MgR cos θ

(c) Two of the Euler-angle coordinates are ignorable. Which ones? The corre-
sponding generalized momenta are constant. Use this to show that the Hamilto-
nian can be written as

H =
p2
θ

2λ1

+ Ueff(θ)

What is the effective potential energy Ueff for this system?

4. Two masses m1 and m2 are joined by a massless spring (force constant k
and natural length l0) and are confined to move in a frictionless horizontal plane,
with CM and relative positions R and r as defined in §8.2. (a) Write down the
Hamiltonian H using as generalized coordinates X, Y , r, φ, where (X, Y ) are the
rectangular components of R, and (r, φ) are the polar coordinates of r. Which
coordinates are ignorable and which are not? Explain. (b) Write down the 8
Hamilton equations of motion. (c) Solve the r equations for the special case that
pφ = 0 and describe the motion.
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5. Consider the modified Atwood machine shown in the figure below. The two
weights on the left have equal masses m and are connected by a massless spring
of Hooke’s-law constant k. The weight on the right has mass M = 2m, and
the pulley is massless and frictionless. The coordinate x is the extension of the
spring from its equilibrium length; that is, the length of the spring is le + x,
where le is the equilibrium length (with all the weights in position and M held
stationary). (a) Show that the total potential energy (spring plus gravitational)
is just U = 1

2
kx2 (plus a constant that we can take to be zero). (b) Find the

two momenta conjugate to x and y. Solve for ẋ and ẏ, and write down the
Hamiltonian. Show that the coordinate y is ignorable. (c) Write down the four
Hamilton equations an solve them for the following initial conditions: You hold
the mass M fixed with the whole system in equilibrium and y = y0. Still holding
M fixed, you pull the lower mass m down a distance x0, and at t = 0 you let go
of both masses. [Hint: Write down the initial values of x, y, and their momenta.
You can solve the x equations by combining them into a second-order equation
for x. Once you know x(t), you can quickly write down the other three variables.]
Describe the motion. In particular, find the frequency with which x oscillates.

Remember online feedback at positron.hep.upenn.edu/q351

XC1. Optional/extra-credit. All of the examples in Taylor’s Chapter 13
and all of the problems (except this one) treat forces that come from a potential
energy U(r) [or occasionally U(r, t)]. However, the proof of Hamilton’s equations
given in §13.3 applies to any system for which Lagrange’s equations hold, and this
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can include forces not derivable from a potential energy. An important example
of such a force is the magnetic force on a charged particle. (a) Use the Lagrangian
(Eq. 7.103) to show that the Hamiltonian for a charge q in an electromagnetic field
is H = (p− qA)2/(2m) + qV . (This Hamiltonian plays an important role in the
quantum mechanics of charged particles.) (b) Show that Hamilton’s equations
are equivalent to the familiar Lorentz force equation mr̈ = q(E + v ×B).

Remember online feedback at positron.hep.upenn.edu/q351
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