
Physics 351, Spring 2017, Midterm Exam.

This closed-book exam has (only) 15% weight in your course grade. You can use one 3×5 card of
your own hand-written notes. Please show your work on these sheets. The back side of each page
is blank, so you can continue your work on the reverse side if you run out of space. Try to work in
a way that makes your reasoning obvious to me, so that I can give you credit for correct reasoning
even in cases where you might have made a careless error. Correct answers without clear reasoning
may not receive full credit.

Write your name on this page now. You should leave the exam closed until everyone is ready to
begin. The exam contains three questions. The first and third questions are worth 35% each. The
second question is worth 30%.

Because I believe that most of the learning in a physics course comes from your investing the time
to work through homework problems, these exam problems are similar or identical to problems that
you have already solved. The only point of the exams, in my opinion, is to motivate you to take the
weekly homework seriously. So you should find nothing surprising in this exam.

Possibly useful equations.
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Remember that the four different orbit shapes are circle, ellipse, parabola, hyperbola.
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Problem 1. (35%)
A mass m is free to slide on a frictionless table and is con-
nected, via a string that passes through a hole in the table,
to a mass M that hangs below. Assume that M moves in a
vertical line only, and assume that the string always remains taut.

(a) Write down the Lagrangian, then find the Lagrange equations
of motion for r and for θ.
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(b) One of these equations of motion identifies a conserved quantity (a constant of the motion), which
you can plug into the other equation of motion. Name the conserved quantity. What feature of the
Lagrangian (sometimes stated as a property of the corresponding coordinate) led us directly to this
conserved quantity?

(c) If the mass m moves in a circle of radius r = r0, what is the angular frequency ω of this motion?
Express ω in terms of m, M , g, and r0.
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(d) If mass m is then perturbed slightly from this circular motion, what is the angular frequency Ω
of the oscillations about the radius r = r0? Express Ω in terms of ω, m, and M , where ω is your
answer from part (c). [If your answer for part (d) makes no sense (e.g. if Ω appears to be imaginary),
then you may have forgotten to make proper use of your answer for part (b).]
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Problem 2. (30%)
Two particles, each of mass m, are joined by a massless spring of natural (relaxed) length L and force
constant k. Let z1 denote the height above the table of particle 1, and let z2 denote the height above
the table of particle 2. Via some unspecified mechanism, the particles are constrained to move only
along this one vertical axis, so there are no x or y coordinates to consider. Assume that z1 > z2.

(a) Write the Lagrangian for the two-particle system in terms of the total mass M , the reduced mass
µ, the COM coordinate Zcm, and the relative coordinate z = z1 − z2.

(b) Write the Lagrange equation of motion for Zcm and write the Lagrange equation of motion for
the relative coordinate z.
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Initially I am holding particle 1 vertically a height L (which equals, as noted above, the relaxed
length of the spring) above particle 2. At time t = 0, I project particle 1 vertically upward with
initial velocity v0, at the same time releasing particle 2 (at rest). So z1(0) = L, z2(0) = 0, ż1(0) = v0,
and ż2(0) = 0, where L equals the relaxed length of the spring.

(c) Find the positions, z1(t) and z2(t), of the two particles at any subsequent time t, before either
particle returns to the table. Assume that v0 is small enough that the two particles never collide.
Since the initial conditions have been fully specified, there should be no undetermined constants
in your answers. That is, you should express z1(t) and z2(t) entirely in terms of t and the given
constants v0, L, g, k, and m. To simplify your expressions, you can — if you wish — define a new
constant ω0 in terms of other given constants.
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Problem 3. (35%)
At a polar angle θ (colatitude), a projectile is launched directly upward with initial speed v0.

(a) Working to first order in Earth’s rotational velocity Ω, calculate the eastward deflection, x(t), due
to the Coriolis force as a function of the time t since the projectile was launched. [Assume that air
resistance is negligible and that g is a constant throughout the flight. I recommend first neglecting
the Coriolis force and writing the “zeroth order” z(t) (upward) for ordinary projectile motion; then
use this zeroth-order trajectory to calculate the first-order Coriolis deflection, after evaluating Ω in
terms of the local x̂ (east), ŷ (north), ẑ (up) axes.] If you happen to know the right answer, you
cannot just write it down. You must show how to work it out step by step. You should get a t2

term and a t3 term, each of whose coefficients should be first-order in Ω.
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(b) Plugging in the zeroth-order time-of-flight (at which the projectile hits the ground), calculate the
Coriolis deflection xf , which should be proportional to Ω (and should have dimensions of distance).

(c) Is the Coriolis deflection that you calculated in (b) in fact eastward, or does it turn out to be
westward? Offer an intuitive explanation for why the sign of your answer makes sense for an object
tossed straight upward from the ground.
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