
Physics 351 — Wednesday, January 17, 2018



One great feature of Taylor’s book is the gentle math review
presented alongside the physics. One worthwhile math trick from
Ch2 is separation of varibles. (The many detailed drag-force results
from Ch2 are not worth remembering, but the math methods he
illustrates are valuable.) Let’s try one separation-of-variables
problem together.

A mass m has initial velocity v0 at t = 0 and coasts along the x
axis with drag force F (v) = −cv3. Find v(t).
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Physics 351 — Wednesday, January 17, 2018

I You’ve now read Chapters 1–4. 60/62 of you have been
answering the reading questions. Better late than never.

I Read Chapter 5 (oscillations) for Friday.

I Homework #1 due on Friday 1/26. I’ll hand it out Friday.

I Homework help sessions start Jan 24–25 (Wed/Thu).

I We’re flying through review chapters 1–5 so that we can
spend more of the semester on the new material, as last year’s
students suggested. The pace will calm down next week.



Incidentally, here’s one way to solve the same problem using
Mathematica. As you learn more and more of Mathematica’s
obscure syntax, you can solve problems with less and less typing.



Obscure: The mysterious /. stands for the ReplaceAll[]

command, which can “plug in” solutions or values to an expression.



The main value of chapter 2 (aside from seeing how air drag can be
handled, which is fun but not something we will build upon in the
course) is Taylor’s showing you some useful mathematical methods.
Since many of you have not yet had much occasion to use complex
exponentials in physics courses, let’s try this problem together:

A charged particle of mass m and positive charge q moves in
uniform electric and magnetic fields, E pointing in the y direction
and B in the z direction (an arrangement called “crossed E and B
fields”). Suppose the particle is initially at the origin and is given a
kick at time t = 0 along the x axis with vx = vx0 (positive or
negative).

(a) Write down the equation of motion for the particle and resolve
it into its three components. Show that the motion remains in the
plane z = 0.





So the motion stays in the z = 0 plane since vz is initially zero.

(b) Notice that if vx0 = E/B (called the “drift speed”), then the
particle moves undeflected through the fields. This is the basis of
velocity selectors, which select particles traveling at one chosen
speed from a beam with many different speeds.

(c) Now make the substitution ux = vx −E/B and uy = vy. Then
write u̇x and u̇y in terms of ux and uy.



(d) Now let η = ux + iuy. Write η̇ in terms of η. Try a solution
η(t) = Ae−iωt.



(d) Now un-substitute to get back vx(t) and vy(t). Then integrate
(using x(0) = y(0) = 0) to find x(t) and y(t). Use the constants
ω = qB/m, vdrift = E/B, R = (vx0 − vdrift)/ω to make the
answer look nice.







Chapter 3: I put this here just for your reference (not in class)
Center of mass (i = particle index here, not coordinate index):

~Rcm =
1

Mtot

∑
i

mi ~ri ⇒ ~vcm =
1

Mtot

∑
i

mi ~vi

Momentum of system is sum of particle momenta:

~Psys =
∑
i

mi ~vi = Mtot

[
1

Mtot

∑
i

mi ~vi

]
= Mtot ~vcm

So CM acceleration is (net external force) / (total mass)

d~Psys

dt
=

∑
~Fexternal = Mtot~acm

(internal forces cancel out: 3rd-law “interaction pairs” sum to 0)

Classic example: rocket (of present mass m(t)) ejecting fuel

d~Psys

dt
= m(t)

d~vrocket
dt

+ ~vexhaust
dm(t)

dt
= ~Fexternal



Angular momentum for a particle (depends on choice of origin!)

~̀= ~r × ~p

Define torque (a.k.a. “moment”) ~τ by analogy with ~F = d~p
dt

~τ ≡ d~̀

dt
= ~v × (m~v) + ~r × d~p

dt
= ~r × d~p

dt
= ~r × ~F net

where last step (Newton’s 2nd law) assumes inertial frame.

Angular momentum for a system of particles (i = particle index):

~Lsys =
∑
i

~̀
i =

∑
i

~ri × ~pi ⇒ d~Lsys

dt
=

∑
i

~ri × ~F net
i

Write out d~Lsys/dt term-by-term for two-particle case:

d~Lsys

dt
= ~r1 × (~F1by2 + ~F1,ext) + ~r2 × (~F2by1 + ~F2,ext)



Write out d~Lsys/dt for two-particle case:

d~Lsys

dt
= ~r1 × (~F12 + ~F1,ext) + ~r2 × (~F21 + ~F2,ext)

= ~r1 × ~F12 + ~r1 × ~F1,ext + ~r2 × ~F21 + ~r2 × ~F2,ext

now use Newton’s third law:

= ~r1 × ~F12 + ~r1 × ~F1,ext + ~r2 × (−~F12) + ~r2 × ~F2,ext

= (~r1 − ~r2)× ~F12 + ~r1 × ~F1,ext + ~r2 × ~F2,ext

now assume ~F12 points along ~r1 − ~r2 (is a “central” force):

d~Lsys

dt
= 0 + ~r1 × ~F1,ext + ~r2 × ~F2,ext = ~τexternal

because (~r1 − ~r2)× (~r1 − ~r2) = 0

So if there are no external torques, then ~Lsys is constant.

(Tip: when proofs filled with
∑

symbols are hard to follow,
try writing out the N = 2 or N = 3 case term-by-term.)



As long as all internal forces are central and obey Third Law (which
is a reasonable assumption for the consituents of a rigid body):

d~Lsys

dt
= ~τext =

∑
i

~ri × ~Fi,ext

Remarkably, even though the above derivation assumed all
vectors were measured w.r.t. an inertial frame, the result still holds
if the CoM is accelerating, as long as ~Lsys and ~τext are measured
using CoM as origin.

d

dt
~Lsys(about CoM) = ~τext(about CoM)

Also note that Taylor uses the symbol Γ for torque rather than the
symbol τ that is more familiar from freshman physics. He also uses

Γ instead of ~Γ for vectors, because Γ̇ looks nicer than ~̇Γ



Let’s see why (in Ch. 10) [reference — too tedious to do in class]

d

dt
~Lsys(about CoM) = ~τext(about CoM)

even if CoM is accelerating. Let ~r′i = ~ri − ~Rcm. Then

~ri = ~r′i + ~Rcm ~vi = ~v′i + ~Vcm ~R′cm = ~0 = ~V ′cm

Assume unprimed frame is inertial, but ~Rcm may be accelerating.

~Lsys =
∑
i

~ri×~pi =
∑
i

~ri×mi~vi =
∑
i

(~r′i+~Rcm)×mi(~v′i+~Vcm) =

∑
i

~r′i×mi
~v′i + (

∑
i

mi
~r′i)× ~Vcm + ~Rcm × (

∑
i

mi
~v′i) + ~Rcm×(

∑
i

mi)~Vcm

=
∑
i

~r′i×mi
~v′i + ~R′

cm × ~Vcm + ~Rcm × (Mtot
~V ′

cm) + ~Rcm×Mtot
~Vcm

=
∑
i

~r′i ×mi
~v′i + ~0× ~Vcm + ~Rcm ×~0 + ~Rcm ×Mtot

~Vcm



~Lsys = ~Rcm ×Mtot
~Vcm +

∑
i

~r′i ×mi
~v′i = ~Lorbital + ~Lspin

where ~Lspin is “angular momentum of the motion relative to CM”

d

dt
~Lsys = ~Vcm ×Mtot

~Vcm + ~Rcm ×Mtot
~Acm +

d

dt
(
∑
i

~r′i ×mi
~v′i)

= ~0 + ~Rcm × ~F ext,net +
d

dt
(
∑
i

~r′i ×mi
~v′i)

d
dt
~Lsys = ~τ = “torque on CM” + “torque about CM”

Now write out ~τ in terms of ~r′ and ~Rcm

~τ =
∑
i

~ri × ~F net,ext
i =

∑
i

(~Rcm + ~r′i)× ~F net,ext
i

~τ = ~Rcm × (
∑
i

~F net,ext
i ) +

∑
i

~r′i × ~F net,ext
i

d

dt
(
∑
i

~r′i ×mi
~v′i) =

∑
i

~r′i × ~F net,ext
i ⇒ d

dt
~Lspin = ~τ(about CM)



If you go through those last several slides at home (only if you’re
curious), you’ll see that we did not need to invoke Newton’s 2nd
law inside a non-inertial frame in order to prove that (even if the
CoM is accelerating),

d

dt
~Lsys(about CoM) = ~τext(about CoM)

as long as ~Lsys and ~τext are measured using CoM as origin.

A more intuitive way to see this is to imagine putting a turn-table
on an accelerating train.

If the rotation axis coincides with the CoM of the turn-table, then
the pseudo-force (“inertial force”) due to the train’s acceleration
has zero lever-arm to rotate the turn-table. [We’ll see in Ch.9.]

But if rotation axis does not pass through CoM, then the train’s
acceleration does have a non-zero lever arm about this axis.



Chapter 3 asks you to recall, without proof, some basic results
from freshman physics about rigid-body rotation about a fixed
axis, which we’ll take to be the z axis.

~L = Lẑ Lz = Iω = Iφ̇

τz =
dLz
dt

= Iα = Iφ̈

I =
∑
i

mi(x
2
i + y2i ) =

∫
(x2 + y2) dm

and in Chapter 4, kinetic energy T = 1
2mv

2 + 1
2Iω

2

In Chapter 10, we’ll generalize to

~L = I · ~ω T =
1

2
~ω · ~L =

1

2
~ω · I · ~ω

where I becomes a matrix, and in general ~L and ~ω can point along

different axes! This has some surprising consequences!



I put this here in case we have extra time:

Consider the complex number z = eiθ = cos θ + i sin θ.

(a) By evaluating z2 two different ways, prove the trig identities
cos 2θ = cos2 θ − sin2 θ and sin 2θ = 2 sin θ cos θ.

(b) Use the same technique to find corresponding identities for
cos 3θ and sin 3θ.
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