
Physics 351 — Friday, January 19, 2018



Work on this while you wait for your classmates to arrive:

Consider the complex number z = eiθ = cos θ + i sin θ.

(a) By evaluating z2 two different ways, prove the trig identities
cos 2θ = cos2 θ − sin2 θ and sin 2θ = 2 sin θ cos θ.

(b) Use the same technique to find corresponding identities for
cos 3θ and sin 3θ.







Physics 351 — Friday, January 19, 2018

I You’ve now read Chapters 1–5.

I We’re flying through review chapters 1–5 so that we can
spend more of the semester on the new material, as last year’s
students suggested. The pace will calm down next week.

I For Monday, read Chapter 6 (Calculus of Variations), which is
the first “new” topic, though some parts of Chapter 5 are
probably also new to you. Calculus of variations is a
generalization of calculus that you may find somewhat
mind-blowing. It is the mathematical underpinning of the
Lagrangian formulation of mechanics.

I Homework #1 due on Friday 1/26. Handing out now.

I Homework help sessions start Jan 24–25 (Wed/Thu).

I We’ll spend today on Chapter 4 (Energy), with a segue into
Chapter 5 (Oscillations). We’ll spend next week on Ch 5–6.
Lagrangians by the end of next Friday.



Chapter 4
The work done on a particle by net force ~F as it moves from
point 1 to point 2 equals the change in the particle’s KE:

∆T = ∆(
1

2
mv2) =

∫ 2

1

~F net · d~r ≡ W (1→ 2)

If every force ~Fi acting on the particle is conservative, then a
potential energy Ui(~r) can be defined for each ~Fi, and the total
mechanical energy is constant:

E = T + U1 + U2 + · · ·+ Un = constant

Or more generally, ∆E = Wnc. Change in mechanical energy
equals the work done by non-conservative forces.

This is important because the Lagrangian formalism only works
well with forces that can be derived from a potential energy U(~r).



A force ~F is conservative if

(a) it depends only on the particle’s position: ~F = ~F (~r)

(b) for any two points 1 and 2, the work W (1→ 2) done by ~F is
the same for all paths joining 1 and 2.

Condition (b) is equivalent to the vector-calculus statement
∇× ~F = 0, i.e. curl of ~F is zero.

In one dimension, condition (a) implies condition (b).



If ~F is conservative, you can define potential energy

U(~r) = −W (~r0 → ~r) = −
∫ ~r

~r0

~F (~r′) · d~r′

so then the force is minus the gradient of the potential energy:

~F = −∇U

i.e. Fx = −∂U/∂x, Fy = −∂U/∂y, Fz = −∂U/∂z.

Notice that ∇× (−∇U) = ~0



Notice that ∇× (−∇U) = ~0

If you’re intrigued by this funny εijk notation, I put some slides on
the topic at the back of today’s slides. It’s called “Cartesian
Einstein notation.”



Reminding yourself what makes a force conservative is worthwhile
here because the Lagrangian approach doesn’t work (at least not
cleanly) with non-conservative forces such as sliding friction, drag
forces, etc.

Non-conservative forces of constraint (which don’t do any work),
such as magnetic forces, or static friction, or the “normal force” of
contact, or the tension in a rigid rod, etc., will turn out to be OK.

The weird case that ~F (~r, t) = −∇U(~r, t) where ~F can be derived
from a time-dependent potential energy U(~r, t) is a case that the
Lagrangian formalism has no trouble with, which is why Taylor
mentions it in Chapter 4.



Life is especially simple for a conservative force in one dimension.
In Chapter 8, we’ll reduce the Kepler problem to a 1D problem,
which tremendously simplifies the solution.

How many equilibrium points do you see here?

How many of them are stable?

How would you find the frequency of small oscillations about the
stable one(s)?

For what range of energies is the particle “bound,” i.e. unable to
escape from the nearby region?



For U(x) = sin(x), where is the force largest?



So you can read off a lot of information by looking at U(x) for a
1D conservative system. You can even “read off” the EOM:

1

2
mv2 = T = Emech − U(x)

ẋ(x) = ±
√

2/m
√
E − U(x)

So you can find t(x) by integration

t =

∫ x

x0

dx′

ẋ(x′)
=

√
m

2

∫ x

x0

dx′√
E − U(x′)

and then solve to get x(t).

On one upcoming homework problem, you’ll use this technique to
find the oscillation period of a pendulum for large amplitude.

On another upcoming problem, you’ll simply write dE/dt = 0 to
find the EOM for a 1D conservative system.

So systems constrained to one “degree of freedom” are usually
easy to solve, even if the motion takes place in 2 or 3 dimensions.



Remember that the definitions of equilibrium and stability for
mechanics may be different from definitions seen in e.g. a
dynamical-systems course.

Equilibrium:
~0 = ~F = −∇U

equilibrium in 1D: dU/dx = 0

Stable in 1D:
d2U/dx2 > 0

(Stable in 3D: eigenvalues of 3× 3 “Hessian” matrix of 2nd partial
derivatives are all positive, i.e. U(~r) is at a local minimum in every
direction, not a saddle point.)



Textbook states: U(θ) =
mg((r+ b) cos θ+ rθ sin θ)

You can work this out in
detail on a future XC
problem if you wish.

U ′(0) = 0 for any b/r.

But U ′′(0) > 0 only for
b/r < 1.

Small cube is stable on
top, but big cube is not.



Vary ratio b/r

(cube half-edge) /
(cylinder radius)

in range
0.1 ≤ b/r ≤ 1.5

U(θ) =
mg((r + b) cos θ

+ rθ sin θ)











The familiar Coulomb and gravitational forces are both
conservative and spherically symmetric. Remarkably, for central
forces, these two properties always go together.

In another future XC problem, you can (if you wish) prove that a
central force that is spherically symmetric, i.e.

~F (~r) = f(|~r|) r̂ = f(r) r̂

is automatically conservative. Let’s prove the converse: that a
central force that is conservative must be spherically symmetric.

Here’s an intuitive proof:



Consider paths ACB and ADB,
where AC and DB are radial,
and AD and CB are arcs of
constant radius (rA or rB).

Since ~F is conservative, work
WA→C→B = WA→D→B.

Since ~F is central ~F = f(~r) r̂

and thus has no non-radial
component,
WA→D = 0 = WC→B.

So WA→C = WD→B, or
f(~rA)dr = f(~rD)dr.

Since A and D can be any two
points at the same distance from
the origin, f(~r) must depend
only on |~r|, i.e. f(~r) = f(r).

Therefore ~F (~r) = ~F (r), i.e. ~F is
spherically symmetric.



So by chopping up an arbitrary path into segments that are either
purely radial or purely tangential, and using the fact that no work
is done along the non-radial segments, one proves that if a central
force is conservative, then it must also be spherically symmetric,
i.e. F (r, θ, φ) = F (r).

The textbook shows a different proof, which uses spherical polar
coordinates, whose conventions people often find challenging to
remember.

So let’s jog your memory of spherical polar coordinates.



z equals r times what? (Don’t say it out loud yet!)

x equals r times what times what?

y equals r times what times what?

Standing on Earth, r̂, θ̂, φ̂ point which ways?



z = r cos θ x = r sin θ cosφ y = r sin θ sinφ

Taylor makes the surprising comment that in polar coordinates,

~a ·~b = arbr + aθbθ + aφbφ

What does that mean? (Think . . .)

Could it possibly mean that

(No) ~r1 · ~r2 = r1r2 + θ1θ2 + φ1φ2 (No)

(No!)



z = r cos θ x = r sin θ cosφ y = r sin θ sinφ

Taylor makes the surprising comment that in polar coordinates,

~a ·~b = arbr + aθbθ + aφbφ

What does that mean? (Think . . .) Could it possibly mean that

(No) ~r1 · ~r2 = r1r2 + θ1θ2 + φ1φ2 (No)

(No!)



Taylor’s comment that in polar coordinates,

~a ·~b = arbr + aθbθ + aφbφ

means that e.g. at one point on or near Earth’s surface, you can
set up an orthonormal local coordinate system and write

r̂ = “up” unit vector

θ̂ = “south” unit vector

φ̂ = “east” unit vector

Then I can write out the components of e.g. a force ~F and a
displacement ∆~r in that orthonormal coordinate system and write
e.g. Work = ~F ·∆~r

W = Fup∆rup + Fsouth∆rsouth + Feast∆reast



z = r cos θ x = r sin θ cosφ y = r sin θ sinφ

If I move dr “up,” and dθ “south,” and dφ “east,” what is my
resulting displacement vector?

d~r = r̂A + θ̂B + φ̂C

What are A, B, and C? (All have dimensions of length.)



z = r cos θ x = r sin θ cosφ y = r sin θ sinφ

If I move dr “up,” and dθ “south,” and dφ “east,” my
displacement vector is

d~r = r̂ dr + θ̂ rdθ + φ̂ r sin θdφ

(This is useful when computing the distance between two (nearby)
terrestrial points, given their (latitude,longitude) geocodes.)









(You try it!)





(A central force exerted by Earth’s center can have an up/down
component but cannot have E/W or N/S components.)



(You can prove the converse as a future XC problem, if you wish.)



Speaking of spherical polar coordinates

Show that the moment of inertia of a uniform solid sphere rotating
about a diameter is I = 2

5MR2.

The integral is easiest in spherical polar coordinates, with the axis
of rotation taken to be the z axis.

Helpful hint: dV = r2 dr d(cos θ) dφ.

For this problem, that form is simpler to use than the other form
you may have seen, dV = r2 dr sin θ dθ dφ But to account
for the minus sign you then integrate from cos θ = −1 to
cos θ = +1 instead of from θ = 0 to θ = π.

Go ahead and try it, with your neighbor. I enjoyed working it out
on my train ride. (We may skip this if time is short.)





This is in the notes for reference. It is too tedious to go through in
class, but it’s a useful trick to know how to use, if you’re interested.

By the way, there is a fun (and at first glance slightly mysterious)
way to prove the dreaded “BAC-CAB rule,” using the “Cartesian
Einstein notation.”



positron.hep.upenn.edu/p351/files/0119_cartesian_einstein.pdf

positron.hep.upenn.edu/p351/files/0119_cartesian_einstein.pdf








I asked you for last night’s reading (optionally) to try this
experiment described by Taylor in Ch 5, footnote 14, page 192:

“The behavior of [the phase shift] δ can, nevertheless, be observed.
Make a simple pendulum from a piece of string and a metal nut,
and drive it by holding it at the top and moving your hand from
side to side. The most obvious thing is that you will be most
successful at driving it when your frequency equals the natural
frequency, but you can also see that when you drive more slowly
the pendulum moves in step with your hand, whereas when you
move more quickly the pendulum moves oppositely to your hand.”
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