Physics 351 — Monday, January 22,

2018
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Work on this while you wait for your classmates to arrive:

Show that the moment of inertia of a uniform solid sphere rotating
about a diameter is [ = %MRQ.

The integral is easiest in spherical polar coordinates, with the axis
of rotation taken to be the z axis.

Helpful hint: ~ dV = 72dr d(cosf) de.

[For this problem, that form is simpler to use than the other form
you may have seen, dV =r2dr sinfdf d¢ But to account
for the minus sign you then integrate from cosd = —1 to

cos = +1 instead of from §# =0 to 6 = 7 ]
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Physics 351 — Monday, January 22, 2018

» Homework #1 due on Friday 1/26.
» Homework help sessions start Jan 24-25 (Wed/Thu).

> After finishing up Friday’s discussion of spherical polar
coordinates, we'll spend the rest of this week on Ch 5-6. I'm
aiming to start Lagrangians by the end of Friday.

» You've now read Chapters 1-6. The pace will calm down now,
as we start the new material.



Taylor's Chapter 4 comment that in polar coordinates,
@-b=asb, + aghp + aghy

means that e.g. at one point on or near Earth's surface, you can
set up an orthonormal local coordinate system and write

7 = "up” unit vector
6 = “south” unit vector
qg = “east” unit vector

Then | can write out the components of e.g. a force F and a
displacement A7 in that orthonormal coordinate system and write
e.g. Work = F' - A7

W = FupArup + FyouthATsouth + FeastATeast
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If I move dr “up,” and df “south,” and d¢ “east,” what is my
resulting displacement vector?

d7 = FA + 6B + ¢C
What are A, B, and C? (All have dimensions of length.)
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If I move dr “up,” and df “south,” and d¢ “east,” my
displacement vector is

A7 = #dr + 0rdf + ¢rsinfde

(This is useful when computing the distance between two (nearby)
terrestrial points, given their (latitude,longitude) geocodes.)



l“‘t')f" G ‘QU\AQ‘{"‘ on U (X, IR Can
Oy \\Q. (‘@of f\xt\wf\:'!—l_?j N\Fv{ ch_sP QQQ_{M(A‘{— (QLX, J?, m’?,— ))

M(’("*"i")i-g*éj,%ﬂ:z) -
UGy, e v oy o B o
Tl e nbviksinmagd Q\v\aﬂy = it It

C\_u B u&mvlzc,gt—iy,t-l-é&)— M(K,y,%)
QU= Py + gy v 2 ds

P
4

LA Coardss: c:,\ LQD/‘éﬁM‘H’Y e arike.  Ha
gﬁaé;e,dr Tl | S Y -
U

il i
\/u‘x&x+ja\j+ ey

Wy

PR



ThA Cordesian L‘Bbféﬂm“-ef ry
Sm&le’\j‘_ O{- u it W W) /'LL #L—&

== e £
U= x-;% +§§g+%ﬁi
Y iz

m {fm&\q,\ ar\-k—_g tn P direction of
prst G\rw&“ Whan T YFoke
R T Step '

i Fi
f"“»’idx +5{d\j -?;J%

‘H-\Q Corrss ?cm é—i‘f\J QLQA};L *A U s

du = Bu)- 42
~ Puw) (&#)%—ﬂs @), +(3U W),

:ﬂ““\x'

Y
¢ " z}\-] Q\J : %’%Q{%



'):\pgo\-(—‘.rp U ac & Fusching nf- the

5 yeliabler C, 4k, we Can e
Q\_M:U(m.é,r/ &+de, (j)-ﬂ—égb) = M(’) &, 8)
LU = %—%&P +~§§49 2 -i%clé
ﬂ;—:mm\& Liga alce o rite
U= U . &7
Ware 2R ¢ He &rf(g(acuMm+ Cororap anding

To  oan iafiaibegiaand Chpoda  £,0,4
d_‘\f‘e(,{‘im\j P

/

= rtdr : &'Lf(o(aozw\m-{- dr
&2 &6+ ds 1 i?ffo((lc“km‘(' rdo é’\
‘?k = ?5 f'é—# 2 JKP(&(QM‘,;(' V’Qrﬁ‘&? g

~ A 2
= dRP~= rdre + & rdo + ?PE?'ASV:L_;&



~ A ~
= de= rde + & rde + ?PS?ASQLF,’S

Q=T e S

RPUatiag  (d/refponding  Ferunl =X
(You try it!)



~

JU = {ﬁ\z\) @f\‘) Jt G“ru)& (d?‘\)& + C%U)g @“r%

du_ ,;} - 0 M e £ U
= Lol
-3 1%

Qlwﬁuﬁ urre;po,\ér@ ferunl =X
LW) \V‘U)@ oy ,au (W ool b
o) 33 v

S FU= “-
o e't) L#(‘:S'_'e’%



Mos Dode to r contml fracce B Hof
s kaoea +y be Confervative. A
We rave thet 6 amwgf  alrs de
spherically  Symmetric i

s )
Conlervctive 3‘5 F=~vUY
U
%“% = _r* "9<l> (r;l}w);';
Ceedra] =5 FlE] = Fyr ==t 9_!:}:

Co the & ond §> +erms  uwt be %or:»

*’\\/(30
= Moo - W (o

e
(A central force exerted by Earth's center can have an up/down
component but cannot have E/W or N/S components.)



gl — TR
B H=0= [argatery

I
% u:u £ MU CK'FULM:Ha onl
L ) o'@ r\QQLf!MS,/‘ j
B
@)= - 22 = - Ul

< alse  a ‘emfi*}m ME} o reding
(e & or & Lapeadence )

= (™) =€)
P " A by
P&r) = ?(") r L S\ mame: ff‘-?'LS.P ’ Uiﬁj

(You can prove the converse as a future XC problem, if you wish.)



One point worth emphasizing from the end of Chapter 4 (Energy):

For two particles interacting only with each other,

in this case,
U _ U ou_ U U _ o
8561 B 81‘2 6y1 B 33/2 82’1 N 822
which implies
Fr,=—-F;
Since there is no ext. force, this is just Newton #3: ﬁlg = —ﬁ21

You know 3rd law <+ momentum conservation

Deep connection (Noether's theorem):
translation invariance <+ momentum conservation



Damped harmonic motion (b = linear drag coefficient from ch2):

= —kx — bz

let wo = v/k/m let 5 =0b/(2m)
i+ 2B¢ + wir =0

This is a linear, 2nd order, homogeneous differential equation.
» Linear because z, &, &, etc. appear only as the first power,
not e.g. &2, x&, z2, sin(z), etc.
» More precisely, “linear” because we're applying a linear
operator D to turn the variable z into the LHS:

d2
D = dt2 —+ 2B + (/JO
d? 9
D[Az1+Bxs) = e (Az1+Bxa) + 2[3 (A:U1+B:U2) +w§(Az1+Bxy) =

Ad +2BA% + Awixy + Bay +28Bas + Bwire = AD[x1]+ BDlxs)



The amazingly useful feature of linearity is that linearity permits us
to use the | superposition principle‘

» If we have two functions x1(t) and x2(t) that separately satisfy
Dlz1(t)] =0

Dlzo(t)] =0

(where D is a linear operator) then a linear combination
x3(t) = Ax1(t) + Bao(t) will also satisfy

Dlzs(t)] =0

» So the superposition of several solutions is also a solution.



i+ 2B% +wir =0
is a linear, 2nd order, homogeneous differential equation.

» Second-order because the order of the highest derivative is 2.

v

Any linear diff eq of order n has n independent solutions, i.e.
general solution contains n arbitrary constants.

» Homogeneous because the RHS is zero. If the RHS is some
f(t), we call this an “inhomogeneous” diff eq.

v

We'll say this again later: The general solution to
(inhomogeneous) D[x] = f(t) is the sum of

» any particular solution to D[x] = f(t)
» plus the general solution to D[z| =0

We'll need that to study “forced” (or “driven”) oscillations.

Now back to our equation.



i+ 2B% +wir =0

Let's guess (!) a solution z(t) = Ae®® and plug it in:

(@ + 208 + wi) Ae™t = 0

a = —fx4/B%—uw}

So (except for the degenerate 3 = wy case), we've found our two
independent solutions:

z(t) = Ae Ptett | Be—Bte—St

where Q = /32 — wi. The most common case is “weak
damping” (“underdamped”), where 3 < wg, so 2% < 0. Then

Q =i\ /wg — B2 =iw

z(t) = e Pt (Aei“”t + Be*i“”t) = Qe Pt cos(wit + ¢g)

If 5 =0.2wq, then wy = 0.98wq. If B = 0.1wg,.then, wi == 0.995ws.



By suitable choice of A and B, we can ensure that z(t) is real, and
that the arbitrary constants C' and ¢q are real.

z(t) = e P (Aei““t + Be_i““t) = Ce Pt cos(wit + ¢o)

Digression: € = cosf + isin 6

cosf =1 (e +e ) sinf = o (e — e7)

Re(z) = 3(z + 2%) Im(z2) = (2 — 2%)

By analogy, cosh§ = £ (e? +e7?) sinh 6 = 3(ef —e9)

So choosing A = %Cei‘bo and B = %C’e‘iqSO gives

z(t) = Ce P cos(wit + ¢o)

where C' and ¢ are fixed by the initial conditions. wi(~ wy) and /3
are properties of the system. “Quality factor” @ = wo/(20).



z(t) = Ce Pt cos(wit + o)
Q = wo/(28).

energy(t) o o2t _ gmwot/Q _ —2mfot/Q _ —2mt/(QTo)

So after @) periods (t = QTp), the energy has decreased by a factor
2T o~ 1
e " & g3~ 0.002.

Equivalently,

() energy stored in oscillator

2 energy dissipated per cycle

[First two Mathematica "Manipulate[]” demos.]



For the special case 5 =0 (“no damping”), wi = wo:

Q = i\Jwi— B2 = i\Jwi—0 = iwg

z(t) = Aetot 4 Be~wolt — C' cos(wot + ¢o)

For the B > wpg “strong damping” (“overdamped”) case, Q2 > 0,

Q is real and nonzero: Q= ./p3% — w%. Then
z(t) = Ae” OV B2-wi)t 4 Be~ (BHV/H2—wi)t

The first term dominates the decay rate, since the second term
decays away more quickly.

Interestingly, in this “overdamped” regime, increasing  (more
damping) actually makes the motion decay less quickly!

Decay rate is largest at ‘“critical” damping, Q2 = 0. Important for
shock absorbers, indicator needles.



Critical damping (222 = 0): Our previous procedure now gives us

only one solution: —f3 + \/m = -4
z(t) = Ae P!
There must be a second solution to
i+28i4+x=0
Let's try another lucky guess:
z = Bte Pt
i = Be Pt — BBte™ P
i=—BBe P — pBe Pt + B2Bte P!

i = —2B8Be Pt 4+ B2 Bte P
28i = 2B8Be Pt — 28%2Bte™ "
B2 = 32 Bte Pt
which add up to zero. So we have

z(t) = (A + Bt)e !



Rate of exponential decay (e.g. 1/7) vs. damping constant f.

decay
parameter

Wo

Figure 5.13  The decay parameter for damped oscillations as
a function of the damping constant 8. The decay parameter
is biggest, and the motion dies out most quickly, for critical
damping, with 8 = w,.
Beyond “critical damping,” adding more damping does not make
the motion decay more quickly!



Driven damped oscillations (why are we allowed to pretend,
counterfactually, that the driving force is complex?)

&+ 2B + wiz = Fpe™!

Let's guess a solution

z(t) = Ce™*
(—w? + 2ifw + wd) Ce™t = Fye™?
Fo

—w? + 2iPw + w%

Fo -
t) = iwt
z(t) (—w2+2iﬁw+wg>e

This is a particular solution to the inhomogeneous linear diff. eq.

Dlz(t)] = Fpe™?

But we already know that
Dle P (Ae™™ + Be )] =0

where Q = /3% — w?



D[Ceiwt] — Foeiwt
Dle PH(Ae™ + Be )] =0
So then
D[efﬁt(Ae+Qt + Beth) + Ceiwt} — Foeiwt

General solution to (inhomogeneous) D|x| = f(t) is sum of
» any particular solution to  D[x] = f(t) (inhomogeneous)

» plus the general solution to D[z] =0  (homogeneous)

2(t) = e PH(Aet® 4+ Be™ ) + Ce™!

Notice that 3 and wp (and Q = /32 — w?) depend only on the
oscillator itself, not on the driving force or the initial conditions.

C and w are properties of the external driving force. A and B
depend on initial conditions, but become irrelevant for ¢t > 1/8.
(The A and B terms are called the “transient” response.)



For driving force Fye™*, we found
z(t) = e P (Ae™¥ + Be M) 4 Cei!
Once the transients have died away (after ~ @ periods of wy),
z(t) = Cet
with

Foy
—w? + 2iBw + w}

If the driving force had been Fye ", we would have found
z(t) = Ce ™1

with
Fy

C =
—w? — 2ifw + w}

Linear superposition lets us average these two solutions to get the
response to real driving force Fy cos(wt).



For driving force I cos(wt) = £ (e™! + e7t), we get (after

transients die out)

Fy/2 . Fy/2 ,
$(t) _ . 0‘/ 5 ciwt + - 0./ 5 —iwt
—w? + 2iBw + w; —w? — 2iBw + w;
which is the same as
F .
z(t) = Re 0 5 et
—w? 4 2ifw + wg
which after some algebra is
x(t) = Acos(wt — 9)
with
F 2
A= 0 6 = arctan (26w2>
\/(wg _ w2)2 4 45%}2 wh —w

[Mathematica and physical demos]



For driving force Fj cos(wt), we found
z(t) = e P (Ae™ + Be ) + Acos(wt — 6)

with Q = /% — w = iwy
F() ﬁw

d = arctan | — 5
\/(wg _ w2)2 + 452(4}2 Wy —w
The important point to remember (for the usual “underdamped”
case) is that the transient response rings at w; = wy, which is close
to the natural frequency, and decays away at rate 5. But the
long-term response is at the driving frequency w, with an
amplitude and phase that depend on w — wy.

A=




52]=

ClearAll["Global «"];

omega® = 2.5; omega = 1.0; beta = 0.1; fampl = 1.0; fphi = 0.0; x0 = 3.0;

vl = 0.0; tmax = 100.0;

soln = NDSolveValue[{x''[t] + 2betax'[t] + omega®P*2 x[t] == fampl Cos[omegat + fphi],
x'[0] =vO, x[0@] =x0}, x[t], {t, O, tmax}];

Plot[{soln, fampl Cos[omegat + fphi]}, {t, ©, tmax}, PlotRange - All]




Let's go back to the complex-number driving force

For driving force Fye™t, we found

z(t) = e P(Ae™M + Be™ ) 4 Ceit
Once the transients have died away (after ~ @ periods of wy),
z(t) = Ce™*
with

Foy
—w? + 2iBw + w?




Now suppose you have a more complicated driving force:
&+ 2B + wir = F, et 4 B et

Since D is linear,

F, €iwat - Fr eiwat
_ 2 2 . 2 - a
wi + 2iBwa + wj
F, et = Fett
—wg + 2iBwy + w(Q]
F eiwat F eiwbt ) )
[ B 2 5 + 3 b - 2} = Fe™wal 4 Fye!
—wa + 21w, +wg  —wp + 2iBwy + wg

So the general solution is

Fa eiwat Fb eiwbt

- _ + e—,@t A@+Qt+BC_Qt
—w2 4 2ifw, + Wi —w? + 2ifwy + wi ( )

z(t) =

where again the transient terms are irrelevant for ¢t > 1/6.



Now consider the more general case
i+ 2B% + wiz = f(t)
and suppose we're able to write

flt) =) Fyent

Then it's clear that the solution would be

Fn ezwnt

+ 2iBw, + wg

x(t) = (transient) + E 5
—w
n n

If f(t) is periodic (period T' = 27 /w), then Prof. Fourier tells us

“+oo
f(t) — Z F, einwt

n=—0oo



—+00
§ F einwt
n

n=—oo
+T/2 ) +T/2 —
_ —an dﬁ / dt e’L n—m)wt — Fnémn — Fm
I F L 2

So the Fourier coefficient F, is

+T/2 ]
s / —zmwt dt
T/2

Note: for f(t) real, F_,, = F, i.e. the negative-frequency
coefficients are the complex conjugates of the corresponding
positive-frequency coefficients.



f (t z F, emwt

n=—oo
with Fourier coefficient F), given by
+T/2
n - f(t —inwt dt
~T/2

Exercise: use this complex-number Fourier formalism to find the
Fourier series for a square wave f(t) of period T' = 27 /w, with

f(t)=0for =T/2 <t <0
flt)y=Afor0<t<T/2

DA
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soa= FLT_]

1/2 + (2/Pi) (Sin[t] + Sin[3t] /3 + Sin[5t] /5);
Plot[f[t], {t, -10, 10}]

700]=




+o0 ) 1 +T/2 _
= 3 B R= g [ e ar

n=—o0 T ~T/2
Exercise: use this complex-number Fourier formalism to find the
Fourier series for a triangle wave f(t) of period T' = 27 /w, with
f(t) = —2At)T for —T/2 <t <0
f(t) =2At)T for 0 <t <T/2

hint : / te” Mt = L et et
(nw)?

=l = =



€ (ﬁ‘ = (% B 707( o .]T: o
-z et =S5
PW\ = E_A : o ) 'O——_ ) bl TH
2\ T e c& = g Qﬂ%ﬁt@-@)

e o
s F%([Q 3 ]'f"lV\/Wf&) T/L ""M'At
TR [ ~ Uhm? }
(rbj?/

S S R
uun-r



(L ) N - e TR 1<
Uy _— (—LAL‘F:)/ Ga(égo.\,\

\

M—
b= T"b t‘{f = L (2] =L
AR
[\ ! i "/' | '%@
R R SN OE ;(ﬁfj




fl[t.] :=1/2 - (4/Pi22) (Cos[t] + Cos[3t]/9 + Cos[5¢t] /25);
Plot[f[t], {t, -10, 10}]
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sin(nut =5) = Cin (e) as(§) + cos(ut) 0n(~5)

g" T = [l\iq P:zu’- )

Notice that the answer came out entirely real, even though we
used complex exponentials. Also notice that this looks just like the
result from the book using sines and cosines:

xn(t) = Ay cos(nwt —d,) Ay = \/(wg—n2w1;732+(2ﬁnw)2 same 0,

and 2f4/(mn) is just f,. (sin vs. cos depends on chosen time
offset of square wave.)
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Physics 351 — Monday, January 22, 2018

» Homework #1 due on Friday 1/26.
» Homework help sessions start Jan 24-25 (Wed/Thu).

> After finishing up Friday’s discussion of spherical polar
coordinates, we'll spend the rest of this week on Ch 5-6. I'm
aiming to start Lagrangians by the end of Friday.

» You've now read Chapters 1-6. The pace will calm down now,
as we start the new material.



