
Physics 351 — Monday, January 22, 2018



Phys 351

Work on this while you wait for your classmates to arrive:

Show that the moment of inertia of a uniform solid sphere rotating
about a diameter is I = 2

5MR2.

The integral is easiest in spherical polar coordinates, with the axis
of rotation taken to be the z axis.

Helpful hint: dV = r2 dr d(cos θ) dφ.

[For this problem, that form is simpler to use than the other form
you may have seen, dV = r2 dr sin θ dθ dφ But to account
for the minus sign you then integrate from cos θ = −1 to
cos θ = +1 instead of from θ = 0 to θ = π.]





Physics 351 — Monday, January 22, 2018

I Homework #1 due on Friday 1/26.

I Homework help sessions start Jan 24–25 (Wed/Thu).

I After finishing up Friday’s discussion of spherical polar
coordinates, we’ll spend the rest of this week on Ch 5–6. I’m
aiming to start Lagrangians by the end of Friday.

I You’ve now read Chapters 1–6. The pace will calm down now,
as we start the new material.



Taylor’s Chapter 4 comment that in polar coordinates,

~a ·~b = arbr + aθbθ + aφbφ

means that e.g. at one point on or near Earth’s surface, you can
set up an orthonormal local coordinate system and write

r̂ = “up” unit vector

θ̂ = “south” unit vector

φ̂ = “east” unit vector

Then I can write out the components of e.g. a force ~F and a
displacement ∆~r in that orthonormal coordinate system and write
e.g. Work = ~F ·∆~r

W = Fup∆rup + Fsouth∆rsouth + Feast∆reast



z = r cos θ x = r sin θ cosφ y = r sin θ sinφ

If I move dr “up,” and dθ “south,” and dφ “east,” what is my
resulting displacement vector?

d~r = r̂A + θ̂B + φ̂C

What are A, B, and C? (All have dimensions of length.)



z = r cos θ x = r sin θ cosφ y = r sin θ sinφ

If I move dr “up,” and dθ “south,” and dφ “east,” my
displacement vector is

d~r = r̂ dr + θ̂ rdθ + φ̂ r sin θdφ

(This is useful when computing the distance between two (nearby)
terrestrial points, given their (latitude,longitude) geocodes.)









(You try it!)





(A central force exerted by Earth’s center can have an up/down
component but cannot have E/W or N/S components.)



(You can prove the converse as a future XC problem, if you wish.)



One point worth emphasizing from the end of Chapter 4 (Energy):

For two particles interacting only with each other,

U(~r1, ~r2) = U(|~r1 − ~r2|)

in this case,

∂U

∂x1
= − ∂U

∂x2

∂U

∂y1
= − ∂U

∂y2

∂U

∂z1
= − ∂U

∂z2

which implies
~F2 = −~F1

Since there is no ext. force, this is just Newton #3: ~F12 = −~F21

You know 3rd law ↔ momentum conservation

Deep connection (Noether’s theorem):
translation invariance ↔ momentum conservation



Damped harmonic motion (b = linear drag coefficient from ch2):

mẍ = −kx− bẋ

let ω0 =
√
k/m let β = b/(2m)

ẍ+ 2βẋ+ ω2
0x = 0

This is a linear, 2nd order, homogeneous differential equation.

I Linear because x, ẋ, ẍ, etc. appear only as the first power,
not e.g. ẋ2, xẋ, x2, sin(x), etc.

I More precisely, “linear” because we’re applying a linear
operator D to turn the variable x into the LHS:

D =
d2

dt2
+ 2β

d

dt
+ ω2

0

D[Ax1+Bx2] =
d2

dt2
(Ax1+Bx2) + 2β

d

dt
(Ax1+Bx2) +ω2

0(Ax1+Bx2) =

Aẍ1 + 2βAẋ1 +Aω2
0x1 +Bẍ2 + 2βBẋ2 +Bω2

0x2 = AD[x1] +BD[x2]



The amazingly useful feature of linearity is that linearity permits us
to use the superposition principle

I If we have two functions x1(t) and x2(t) that separately satisfy

D[x1(t)] = 0

D[x2(t)] = 0

(where D is a linear operator) then a linear combination
x3(t) = Ax1(t) +Bx2(t) will also satisfy

D[x3(t)] = 0

I So the superposition of several solutions is also a solution.



ẍ+ 2βẋ+ ω2
0x = 0

is a linear, 2nd order, homogeneous differential equation.

I Second-order because the order of the highest derivative is 2.

I Any linear diff eq of order n has n independent solutions, i.e.
general solution contains n arbitrary constants.

I Homogeneous because the RHS is zero. If the RHS is some
f(t), we call this an “inhomogeneous” diff eq.

I We’ll say this again later: The general solution to
(inhomogeneous) D[x] = f(t) is the sum of

I any particular solution to D[x] = f(t)
I plus the general solution to D[x] = 0

We’ll need that to study “forced” (or “driven”) oscillations.

Now back to our equation.



ẍ+ 2βẋ+ ω2
0x = 0

Let’s guess (!) a solution x(t) = Aeαt and plug it in:

(α2 + 2αβ + ω2
0) Aeαt = 0

α = − β ±
√
β2 − ω2

0

So (except for the degenerate β = ω0 case), we’ve found our two
independent solutions:

x(t) = Ae−βte+Ωt + Be−βte−Ωt

where Ω =
√
β2 − ω2

0. The most common case is “weak
damping” (“underdamped”), where β < ω0, so Ω2 < 0. Then

Ω = i
√
ω2

0 − β2 = iω1

x(t) = e−βt
(
Aeiω1t +Be−iω1t

)
= Ce−βt cos(ω1t+ φ0)

If β = 0.2ω0, then ω1 ≈ 0.98ω0. If β = 0.1ω0, then ω1 ≈ 0.995ω0.



By suitable choice of A and B, we can ensure that x(t) is real, and
that the arbitrary constants C and φ0 are real.

x(t) = e−βt
(
Aeiω1t +Be−iω1t

)
= Ce−βt cos(ω1t+ φ0)

Digression: eiθ = cos θ + i sin θ

cos θ = 1
2 (eiθ + e−iθ) sin θ = 1

2i (eiθ − e−iθ)

Re(z) = 1
2(z + z∗) Im(z) = 1

2i(z − z
∗)

By analogy, cosh θ = 1
2(eθ + e−θ) sinh θ = 1

2(eθ − e−θ)

So choosing A = 1
2Ce

iφ0 and B = 1
2Ce

−iφ0 gives

x(t) = Ce−βt cos(ω1t+ φ0)

where C and φ0 are fixed by the initial conditions. ω1(≈ ω0) and β
are properties of the system. “Quality factor” Q = ω0/(2β).



x(t) = Ce−βt cos(ω1t+ φ0)

Q = ω0/(2β).

energy(t) ∝ e−2βt = e−ω0t/Q = e−2πf0t/Q = e−2πt/(QT0)

So after Q periods (t = QT0), the energy has decreased by a factor
e−2π ≈ 1

535 ≈ 0.002.

Equivalently,

Q

2π
=

energy stored in oscillator

energy dissipated per cycle

[First two Mathematica “Manipulate[]” demos.]



For the special case β = 0 (“no damping”), ω1 = ω0:

Ω = i
√
ω2

0 − β2 = i
√
ω2

0 − 0 = iω0

x(t) = Aeiω0t +Be−iω0t = C cos(ω0t+ φ0)

For the β > ω0 “strong damping” (“overdamped”) case, Ω2 > 0,
Ω is real and nonzero: Ω =

√
β2 − ω2

0. Then

x(t) = Ae−(β−
√
β2−ω2

0)t +Be−(β+
√
β2−ω2

0)t

The first term dominates the decay rate, since the second term
decays away more quickly.

Interestingly, in this “overdamped” regime, increasing β (more
damping) actually makes the motion decay less quickly!

Decay rate is largest at “critical” damping, Ω2 = 0. Important for
shock absorbers, indicator needles.



Critical damping (Ω2 = 0): Our previous procedure now gives us
only one solution: −β ±

√
β2 − ω2

0 = − β

x(t) = Ae−βt

There must be a second solution to

ẍ+ 2βẋ+ β2x = 0

Let’s try another lucky guess:

x = Bte−βt

ẋ = Be−βt − βBte−βt

ẍ = −βBe−βt − βBe−βt + β2Bte−βt

ẍ = −2βBe−βt + β2Bte−βt

2βẋ = 2βBe−βt − 2β2Bte−βt

β2x = β2Bte−βt

which add up to zero. So we have

x(t) = (A+Bt)e−βt



Rate of exponential decay (e.g. 1/τ) vs. damping constant β.

Beyond “critical damping,” adding more damping does not make
the motion decay more quickly!



Driven damped oscillations (why are we allowed to pretend,
counterfactually, that the driving force is complex?)

ẍ+ 2βẋ+ ω2
0x = F0e

iωt

Let’s guess a solution
x(t) = Ceiωt

(−ω2 + 2iβω + ω2
0)Ceiωt = F0e

iωt

C =
F0

−ω2 + 2iβω + ω2
0

x(t) =

(
F0

−ω2 + 2iβω + ω2
0

)
eiωt

This is a particular solution to the inhomogeneous linear diff. eq.

D[x(t)] = F0e
iωt

But we already know that

D[e−βt(Ae+Ωt +Be−Ωt)] = 0

where Ω =
√
β2 − ω2

0



D[Ceiωt] = F0e
iωt

D[e−βt(Ae+Ωt +Be−Ωt)] = 0

So then

D[e−βt(Ae+Ωt +Be−Ωt) + Ceiωt] = F0e
iωt

General solution to (inhomogeneous) D[x] = f(t) is sum of

I any particular solution to D[x] = f(t) (inhomogeneous)

I plus the general solution to D[x] = 0 (homogeneous)

x(t) = e−βt(Ae+Ωt +Be−Ωt) + Ceiωt

Notice that β and ω0 (and Ω =
√
β2 − ω2

0) depend only on the
oscillator itself, not on the driving force or the initial conditions.

C and ω are properties of the external driving force. A and B
depend on initial conditions, but become irrelevant for t� 1/β.
(The A and B terms are called the “transient” response.)



For driving force F0e
iωt, we found

x(t) = e−βt(Ae+Ωt +Be−Ωt) + Ceiωt

Once the transients have died away (after ∼ Q periods of ω0),

x(t) = Ceiωt

with

C =
F0

−ω2 + 2iβω + ω2
0

If the driving force had been F0e
−iωt, we would have found

x(t) = Ce−iωt

with

C =
F0

−ω2 − 2iβω + ω2
0

Linear superposition lets us average these two solutions to get the
response to real driving force F0 cos(ωt).



For driving force F0 cos(ωt) = F0
2 (eiωt + e−iωt), we get (after

transients die out)

x(t) =
F0/2

−ω2 + 2iβω + ω2
0

eiωt +
F0/2

−ω2 − 2iβω + ω2
0

e−iωt

which is the same as

x(t) = Re

(
F0

−ω2 + 2iβω + ω2
0

eiωt
)

which after some algebra is

x(t) = A cos(ωt− δ)

with

A =
F0√

(ω2
0 − ω2)2 + 4β2ω2

δ = arctan

(
2βω

ω2
0 − ω2

)

[Mathematica and physical demos]



For driving force F0 cos(ωt), we found

x(t) = e−βt(Ae+Ωt +Be−Ωt) +A cos(ωt− δ)
with Ω =

√
β2 − ω2

0 = iω1

A =
F0√

(ω2
0 − ω2)2 + 4β2ω2

δ = arctan

(
2βω

ω2
0 − ω2

)
The important point to remember (for the usual “underdamped”
case) is that the transient response rings at ω1 ≈ ω0, which is close
to the natural frequency, and decays away at rate β. But the
long-term response is at the driving frequency ω, with an
amplitude and phase that depend on ω − ω0.





Let’s go back to the complex-number driving force

For driving force F0e
iωt, we found

x(t) = e−βt(Ae+Ωt +Be−Ωt) + Ceiωt

Once the transients have died away (after ∼ Q periods of ω0),

x(t) = Ceiωt

with

C =
F0

−ω2 + 2iβω + ω2
0



Now suppose you have a more complicated driving force:

ẍ+ 2βẋ+ ω2
0x = Fa e

iωat + Fb e
iωbt

Since D is linear,

D
[

Fa e
iωat

−ω2
a + 2iβωa + ω2

0

]
= Fae

iωat

D
[

Fb e
iωbt

−ω2
b + 2iβωb + ω2

0

]
= Fbe

iωbt

D
[

Fa e
iωat

−ω2
a + 2iβωa + ω2

0

+
Fb e

iωbt

−ω2
b + 2iβωb + ω2

0

]
= Fae

iωat +Fbe
iωbt

So the general solution is

x(t) =
Fa e

iωat

−ω2
a + 2iβωa + ω2

0

+
Fb e

iωbt

−ω2
b + 2iβωb + ω2

0

+ e−βt(Ae+Ωt+Be−Ωt)

where again the transient terms are irrelevant for t� 1/β.



Now consider the more general case

ẍ+ 2βẋ+ ω2
0x = f(t)

and suppose we’re able to write

f(t) =
∑
n

Fn e
iωnt

Then it’s clear that the solution would be

x(t) = (transient) +
∑
n

Fn e
iωnt

−ω2
n + 2iβωn + ω2

0

If f(t) is periodic (period T ≡ 2π/ω), then Prof. Fourier tells us

f(t) =

+∞∑
n=−∞

Fn e
inωt



f(t) =

+∞∑
n=−∞

Fn e
inωt

1

T

∫ +T/2

−T/2
f(t) e−imωt dt =

∑
n

Fn
T

∫ +T/2

−T/2
dt ei(n−m)ωt =

∑
n

Fnδmn = Fm

So the Fourier coefficient Fm is

Fm =
1

T

∫ +T/2

−T/2
f(t)e−imωt dt

Note: for f(t) real, F−m = F ∗m, i.e. the negative-frequency
coefficients are the complex conjugates of the corresponding
positive-frequency coefficients.



f(t) =

+∞∑
n=−∞

Fn e
inωt

with Fourier coefficient Fn given by

Fn =
1

T

∫ +T/2

−T/2
f(t)e−inωt dt

Exercise: use this complex-number Fourier formalism to find the
Fourier series for a square wave f(t) of period T = 2π/ω, with

f(t) = 0 for −T/2 < t < 0
f(t) = A for 0 < t < T/2







f(t) =

+∞∑
n=−∞

Fn e
inωt Fn =

1

T

∫ +T/2

−T/2
f(t)e−inωt dt

Exercise: use this complex-number Fourier formalism to find the
Fourier series for a triangle wave f(t) of period T = 2π/ω, with

f(t) = −2At/T for −T/2 < t < 0
f(t) = 2At/T for 0 < t < T/2

hint :

∫
te−inωtdt =

1 + inωt

(nω)2
e−inωt





















Notice that the answer came out entirely real, even though we
used complex exponentials. Also notice that this looks just like the
result from the book using sines and cosines:
xn(t) = An cos(nωt− δn) An = fn√

(ω2
0−n2ω2)2+(2βnω)2

same δn

and 2fA/(πn) is just fn. (sin vs. cos depends on chosen time
offset of square wave.)



Physics 351 — Monday, January 22, 2018

I Homework #1 due on Friday 1/26.

I Homework help sessions start Jan 24–25 (Wed/Thu).

I After finishing up Friday’s discussion of spherical polar
coordinates, we’ll spend the rest of this week on Ch 5–6. I’m
aiming to start Lagrangians by the end of Friday.

I You’ve now read Chapters 1–6. The pace will calm down now,
as we start the new material.


