Physics 351 — Wednesday, January 24, 2018

» Homework #1 due on Friday. Start reading ch7 for Monday.

» I'll hand out HW #2 in class on Friday, and I'll put the PDF
online some time tomorrow.

» You can do the Mathematica extra credit any time you like (if
at all), but the earlier you do it, the more you'll be able to
make use of Mathematica to reduce tedious algebra in your
own homework.

» Homework help sessions start Jan 24-25 (Wed/Thu).

> Bill will be in DRL 3N6 on Wednesdays 4pm—7pm

» Grace will be in DRL 2C2 on Thursdays 5:30pm-8:30pm
> We'll spend the rest of this week on Ch 5-6.

Before class: write cos in terms of € and e=. Then do sin 6.
Next write cosh 6 in terms of ¢ and e=?. Then write sinh 6.



i+ 2B% +wir =0

Let's guess (!) a solution z(t) = Ae®® and plug it in:

(@ + 208 + wi) Ae™t = 0

a = —fx4/B%—uw}

So (except for the degenerate 3 = wy case), we've found our two
independent solutions:

z(t) = Ae Ptett | Be—Bte—St

where Q = /32 — wi. The most common case is “weak
damping” (“underdamped”), where 3 < wg, so 2% < 0. Then

Q =i\ /wg — B2 =iw

z(t) = e Pt (Aei“”t + Be*i“”t) = Qe Pt cos(wit + ¢g)

If 5 =0.2wq, then wy = 0.98wq. If B = 0.1wg,.then, wi == 0.995ws.



By suitable choice of A and B, we can ensure that z(t) is real, and
that the arbitrary constants C' and ¢q are real.

z(t) = e P (Aei““t + Be_i““t) = Ce Pt cos(wit + ¢o)

Digression: € = cosf + isin 6

cosf =1 (e +e ) sinf = o (e — e7)

Re(z) = 3(z + 2%) Im(z2) = (2 — 2%)

By analogy, cosh§ = £ (e? +e7?) sinh 6 = 3(ef —e9)

So choosing A = %Cei‘bo and B = %C’e‘iqSO gives

z(t) = Ce P cos(wit + ¢o)

where C' and ¢ are fixed by the initial conditions. wi(~ wy) and /3
are properties of the system. “Quality factor” @ = wo/(20).



z(t) = Ce P cos(wit + ¢o)
Q = wo/(28).

energy(t) o e 20t = wot/@ — 72mfot/Q — o=27t/(QTD)

So after @ periods (t = QTp), the energy has decreased by a factor

e ~ =~ 0.002.

Equivalently,

Q) energy stored in oscillator

27 energy dissipated per cycle

[First two Mathematica "Manipulate[]" demos.]
http://positron.hep.upenn.edu/p351/files/0122_ddo.nb
http://positron.hep.upenn.edu/p351/files/0122_ddo.pdf


http://positron.hep.upenn.edu/p351/files/0122_ddo.nb
http://positron.hep.upenn.edu/p351/files/0122_ddo.pdf

For the special case 5 =0 (“no damping”), wi = wo:

Q = i\Jwi— B2 = i\Jwi—0 = iwg

z(t) = Aetot 4 Be~wolt — C' cos(wot + ¢o)

For the B > wpg “strong damping” (“overdamped”) case, Q2 > 0,

Q is real and nonzero: Q= ./p3% — w%. Then
z(t) = Ae” OV B2-wi)t 4 Be~ (BHV/H2—wi)t

The first term dominates the decay rate, since the second term
decays away more quickly.

Interestingly, in this “overdamped” regime, increasing  (more
damping) actually makes the motion decay less quickly!

Decay rate is largest at ‘“critical” damping, Q2 = 0. Important for
shock absorbers, indicator needles.



Critical damping (222 = 0): Our previous procedure now gives us

only one solution: —f3 + \/m = -4
z(t) = Ae P!
There must be a second solution to
i+28i4+x=0
Let's try another lucky guess:
z = Bte Pt
i = Be Pt — BBte™ P
i=—BBe P — pBe Pt + B2Bte P!

i = —2B8Be Pt 4+ B2 Bte P
28i = 2B8Be Pt — 28%2Bte™ "
B2 = 32 Bte Pt
which add up to zero. So we have

z(t) = (A + Bt)e !



Rate of exponential decay (e.g. 1/7) vs. damping constant f.

decay
parameter

Wo

Figure 5.13  The decay parameter for damped oscillations as
a function of the damping constant 8. The decay parameter
is biggest, and the motion dies out most quickly, for critical
damping, with 8 = w,.
Beyond “critical damping,” adding more damping does not make
the motion decay more quickly!



Driven damped oscillations (why are we allowed to pretend,
counterfactually, that the driving force is complex?)

&+ 2B + wiz = Fpe™!

Let's guess a solution

z(t) = Ce™*
(—w? + 2ifw + wd) Ce™t = Fye™?
Fo

—w? + 2iPw + w%

Fo -
t) = iwt
z(t) (—w2+2iﬁw+wg>e

This is a particular solution to the inhomogeneous linear diff. eq.

Dlz(t)] = Fpe™?

But we already know that
Dle P (Ae™™ + Be )] =0

where Q = /3% — w?



D[Ceiwt] — Foeiwt
Dle PH(Ae™ + Be )] =0
So then
D[efﬁt(Ae+Qt + Beth) + Ceiwt} — Foeiwt

General solution to (inhomogeneous) D|x| = f(t) is sum of
» any particular solution to  D[x] = f(t) (inhomogeneous)

» plus the general solution to D[z] =0  (homogeneous)

2(t) = e PH(Aet® 4+ Be™ ) + Ce™!

Notice that 3 and wp (and Q = /32 — w?) depend only on the
oscillator itself, not on the driving force or the initial conditions.

C and w are properties of the external driving force. A and B
depend on initial conditions, but become irrelevant for ¢t > 1/8.
(The A and B terms are called the “transient” response.)



For driving force Fye™*, we found
z(t) = e P (Ae™¥ + Be M) 4 Cei!
Once the transients have died away (after ~ @ periods of wy),
z(t) = Cet
with

Foy
—w? + 2iBw + w}

If the driving force had been Fye ", we would have found
z(t) = Ce ™1

with
Fy

C =
—w? — 2ifw + w}

Linear superposition lets us average these two solutions to get the
response to real driving force Fy cos(wt).



For driving force I cos(wt) = £ (e™! + e7t), we get (after

transients die out)

Fy/2 . Fy/2 ,
$(t) _ . 0‘/ 5 ciwt + - 0./ 5 —iwt
—w? + 2iBw + w; —w? — 2iBw + w;
which is the same as
F .
z(t) = Re 0 5 et
—w? 4 2ifw + wg
which after some algebra is
x(t) = Acos(wt — 9)
with
F 2
A= 0 6 = arctan (26w2>
\/(wg _ w2)2 4 45%}2 wh —w

[Mathematica and physical demos]



For driving force Fj cos(wt), we found
z(t) = e P (Ae™ + Be ) + Acos(wt — 6)

with Q = /% — w = iwy
F() ﬁw

d = arctan | — 5
\/(wg _ w2)2 + 452(4}2 Wy —w
The important point to remember (for the usual “underdamped”
case) is that the transient response rings at w; = wy, which is close
to the natural frequency, and decays away at rate 5. But the
long-term response is at the driving frequency w, with an
amplitude and phase that depend on w — wy.

A=




'52]=

ClearAll["Global «"];

omega® = 2.5; omega = 1.0; beta = 0.1; fampl = 1.0; fphi = 0.0} x0 = 3.0}

vl = 0.0; tmax = 100.0;

soln = NDSolveValue[{x''[t] + 2betax'[t] + omega®*2 x[t] == fampl Cos[omegat + fphi],
x'[0@] =vO, x[0] =x0}, x[t], {t, @, tmax}];

Plot[{soln, fampl Cos[omegat + fphi]}, {t, ©, tmax}, PlotRange - All]

Simpler example (useful for homework) on next page.



v 5= ClearAll["Global "]
g = 9.8;
1=1.0;
soln = NDSolveValue[
{8'"[t] + (g/1) Sin[e[t]] = 0, &8'[0] = O,
e[0] == .1}, e[t], {t, 0, 10}]

| Domain: {{0., 10.}}

ougl= InterpolatingFunction [ Output: scalar

[(t]

v njg= Plot[soln, {t, @, 10}]
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Let's go back to the complex-number driving force

For driving force Fye™t, we found

z(t) = e P(Ae™M + Be™ ) 4 Ceit
Once the transients have died away (after ~ @ periods of wy),
z(t) = Ce™*
with

Foy
—w? + 2iBw + w?




Now suppose you have a more complicated driving force:
&+ 2B + wir = F, et 4 B et

Since D is linear,

F, €iwat - Fr eiwat
_ 2 2 . 2 - a
wi + 2iBwa + wj
F, et = Fett
—wg + 2iBwy + w(Q]
F eiwat F eiwbt ) )
[ B 2 5 + 3 b - 2} = Fe™wal 4 Fye!
—wa + 21w, +wg  —wp + 2iBwy + wg

So the general solution is

Fa eiwat Fb eiwbt

- _ + e—,@t A@+Qt+BC_Qt
—w2 4 2ifw, + Wi —w? + 2ifwy + wi ( )

z(t) =

where again the transient terms are irrelevant for ¢t > 1/6.



Now consider the more general case
i+ 2B% + wiz = f(t)
and suppose we're able to write

flt) =) Fyent

Then it's clear that the solution would be

Fn ezwnt

+ 2iBw, + wg

x(t) = (transient) + E 5
—w
n n

If f(t) is periodic (period T' = 27 /w), then Prof. Fourier tells us

“+oo
f(t) — Z F, einwt

n=—0oo



—+00
§ F einwt
n

n=—oo
+T/2 ) +T/2 —
_ —an dﬁ / dt e’L n—m)wt — Fnémn — Fm
I F L 2

So the Fourier coefficient F, is

+T/2 ]
s / —zmwt dt
T/2

Note: for f(t) real, F_,, = F, i.e. the negative-frequency
coefficients are the complex conjugates of the corresponding
positive-frequency coefficients.



f (t z F, emwt

n=—oo
with Fourier coefficient F), given by
+T/2
n - f(t —inwt dt
~T/2

Exercise: use this complex-number Fourier formalism to find the
Fourier series for a square wave f(t) of period T' = 27 /w, with

f(t)=0for =T/2 <t <0
flt)y=Afor0<t<T/2
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soa= FLT_]

1/2 + (2/Pi) (Sin[t] + Sin[3t] /3 + Sin[5t] /5);
Plot[f[t], {t, -10, 10}]

700]=




+o0 ) 1 +T/2 _
= 3 B R= g [ e ar

n=—o0 T ~T/2
Exercise: use this complex-number Fourier formalism to find the
Fourier series for a triangle wave f(t) of period T' = 27 /w, with
f(t) = —2At)T for —T/2 <t <0
f(t) =2At)T for 0 <t <T/2

hint : / te” Mt = L et et
(nw)?
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fl[t.] :=1/2 - (4/Pi22) (Cos[t] + Cos[3t]/9 + Cos[5¢t] /25);
Plot[f[t], {t, -10, 10}]

1.0F

081

061

0.4r

-10 -5 5 10



g?"ﬂ'-.ﬂ?(.—.,: 2 "‘DQP}O&TL S'ﬁt;um/\q Koy
L [J -
; | FO=2 otz
| | e i~
(v o
r

b = £=1T - - e
-/
i) APPSR ki
FE =2 $E . I T M
= W
= /o = =
e T N e
= | =N S .
T \"dmwm ) " e 7Y
"DA /f t'ﬁ\“‘\ -’QKA: i 771'77\ > \7
== ) = e e
2rim : Urim N




L £
‘\:M‘wxei&/ £ -EA;';“L

Mo Urim IT™
For  Quan W #0, Ea =0.

A “C““Qm - *(L) k

T
2

(% g st the  averspe < p(fi)» )
Wt
S x) = (*Fran_s ?né») ) e z 22

‘Druygzﬁ _U\Mn‘{*em,s{-ﬁ@ {ren 5. wt
) = 7B i) = 20np)
(- A+ (2 Re)”

H



‘F -.
__j:"o ; Z(%}(an&‘ wtf\w&)(wa o J

iz (rora®  (Lafe)

? Kﬂ‘n>( i i f) (<2 ABCA)

0= Zx) +(7-ni3r>)

fir



) (@it ')
) +Z @)™ + QaBe)™
Xe) =
— Mfi—)(z@s(ouﬁ)) (-280)
+ L

P
B~ ¢ (Zpoy
n =
Jf‘j:rﬂ"




25
L L “) ain(n3€) (wB~n"w)
4
2;% =) T H(2aB)
+ 5 T ostns) (= 2Be)
(W) " (LaRe)™

“z.u




| (j\J;—‘nL@L
fhe AF Cp =
S R e

| gl\ = — ZAP}N ey
[r— sy + Q- = ()

nstice Prot C?F b= S Z =4

e B Sinlaut) cos($)
©f *7 g (“: M = 5 ()™

13f

— |
Py M, S
L TV (=00 g™

==
AIPE €6 il

= o (é,)




u€) =

4*—=F,‘3,r,m

L

T (AT rafo
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Notice that the answer came out entirely real, even though we
used complex exponentials. Also notice that this looks just like the
result from the book using sines and cosines:

xn(t) = Ay cos(nwt —d,) Ay = \/(wg—n2w1;732+(2ﬁnw)2 same 0,

and 2f4/(mn) is just f,. (sin vs. cos depends on chosen time
offset of square wave.)
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» Homework #1 due on Friday. Start reading ch7 for Monday.

» I'll hand out HW #2 in class on Friday, and I'll put the PDF
online some time tomorrow.

» You can do the Mathematica extra credit any time you like (if
at all), but the earlier you do it, the more you'll be able to
make use of Mathematica to reduce tedious algebra in your
own homework.

» Homework help sessions start Jan 24-25 (Wed/Thu).

> Bill will be in DRL 3N6 on Wednesdays 4pm—7pm

» Grace will be in DRL 2C2 on Thursdays 5:30pm-8:30pm
> We'll spend the rest of this week on Ch 5-6.



