
Physics 351 — Monday, January 29, 2018

I For today you read §7.1–7.7 of Ch 7 (Lagrange’s equations).
Next weekend you’ll read the rest of Ch 7.

I You can do the Mathematica extra credit any time you like (if
at all), but the earlier you do it, the more you’ll be able to
make use of Mathematica to reduce tedious algebra in your
own homework. The “hands on start” chapters are a good
tutorial. I found them both helpful and painless.

Before class: use ∂f/∂y = d
dx ∂f/∂y

′ to find a function y(x) that
“extremizes” (i.e. makes stationary w.r.t. small variations in y(x))

F [y] =

∫ x=1

x=0
dx
(
(y′)2 + 2yex

)
subject to y(0) = 0 and y(1) = 1. So f(x, y, y′) = (y′)2 + 2yex in
the Euler-Lagrange equation.



Find a function y(x) that minimizes

I[y] =

∫ 1

0
dx
(
(y′)2 + 2yex

)
subject to y(0) = 0 and y(1) = 1.





In Calculus of Variations, we want to find the function y(x) that
“minimizes” (or at least makes “stationary”) some integral

F [y] =

∫ xf

xi

dx f(x, y, y′)

w.r.t. small variations in y(x). So we consider “nearby” paths

Y (x, ε) = y(x) + εη(x)

but we insist that Y (x) coincide with y(x) at the endpoints, i.e.
η(xi) = η(xf ) = 0. For varied paths Y [x], the integral

F [y + ε η] =

∫ xf

xi

dx f(x, y(x) + ε η(x), y′ + ε η′(x))

depends on ε. “Stationary” path y(x) is where dF/dε = 0. If you
Taylor-expand F [y + εη] = F [y] + aε+ bε2 + · · · , you get a = 0.

Ex: F [y] =
∫ 1
x=0 dx

√
1 + (y′)2, such that y(0) = 0, y(1) = 1, and

let’s explicitly choose η(x) = sin(πx) to perturb y(x).



(x1, y1) = (0, 0), (x2, y2) = (1, 1), f(x, y, y′) =
√

1 + y′2, η(x) = sin(πx)



(x1, y1) = (0, 0), (x2, y2) = (1, 1), f(x, y, y′) =
√

1 + y′2, η(x) = sin(πx)



(x1, y1) = (0, 0), (x2, y2) = (1, 1), f(x, y, y′) =
√

1 + y′2, η(x) = sin(πx)



(x1, y1) = (0, 0), (x2, y2) = (1, 1), f(x, y, y′) =
√

1 + y′2, η(x) = sin(πx)



(x1, y1) = (0, 0), (x2, y2) = (1, 1), f(x, y, y′) =
√

1 + y′2, η(x) = sin(πx)

http://positron.hep.upenn.edu/p351/files/0129_varypath.nb

http://positron.hep.upenn.edu/p351/files/0129_varypath.pdf

http://positron.hep.upenn.edu/p351/files/0129_varypath.nb
http://positron.hep.upenn.edu/p351/files/0129_varypath.pdf








Here’s another example, but I think we may skip it to save time.

When would this ever arise? Perhaps you want to find the path
y(x) followed by light when the index of refraction n(x) = a

√
x.





We’ll solve this problem 3 different ways, to illustrate two ways
that “conserved quantities” (which will turn out in mechanics to be
momentum and energy) can reduce the E-L equation to first-order.



(To do the hanging-chain problem properly, we
should impose a constraint that the total length of
the chain be fixed. Let’s ignore that complication
until we learn about Lagrange multipliers at the end
of Chapter 7. Alternatively, you can view this integral
as a (correct) formulation of the “soap film” problem:
minimizes area of surface of revolution.)

U = µg

∫
y ds = µg

∫
y
√
1 + y′2 dx

Try writing down

∂f

∂y
=

d

dx

∂f

∂y′

Warning — it’s surprisingly messy! Downright gross, before some
nice cancellations clean it up. See if you can get it to look like
1 + (y′)2 − y y′′ = 0 after a lot of cancelling.





1 + y′2 − yy′′ = 0



A second way to approach this same problem is to solve for x(y)
instead of solving for y(x).

U = µg

∫
y ds = µg

∫
y
√
1 + x′2 dy

Now we have
∫
dyf(y, x, x′), so the Euler-Lagrange equation

becomes

∂f

∂x
=

d

dy

∂f

∂x′

Now we can use the “momentum conservation” trick, because
f(y, x, x′) is independent of x.



So the “conserved momentum” trick — f(y, x, x′) indep. of x,
which next time will be analogous to L(t, x, ẋ) indep. of x — gave
us a first-order ODE (compare with 1 + y′2 − yy′′ = 0), which we
could integrate instead of having to guess a solution.



There is a second trick for getting a first-order ODE from the E-L
equation, which works if f(x, y, y′) = f(y, y′) is independent of x.
This trick will turn out next time to be analogous to the total
energy being conserved, if L(t, x, ẋ) is independent of t.

Claim:
If f(x, y, y′) = f(y, y′) i.e. f(x, y, y′) is independent of x,
then any function y(x) that extremizes

∫
dx f(y, y′) satisfies

h ≡ y′
∂f

∂y′
− f(y, y′) = constant

In the context of mechanics, h will be the “Hamiltonian,” which
equals the (constant) total energy if L(t, x, ẋ) is independent of t.



Given: y(x) extremizes
∫
dx f(y, y′)

Claim:

h ≡ y′
∂f

∂y′
− f(y, y′) = constant

Proof:

dh

dx
= y′′

∂f

∂y′
+ y′

(
d

dx

∂f

∂y′

)
− ∂f

∂y

dy

dx
− ∂f

∂y′
dy′

dx

dh

dx
= y′′

∂f

∂y′
+ y′

(
d

dx

∂f

∂y′

)
− y′

∂f

∂y
− y′′

∂f

∂y′

dh

dx
= y′

(
d

dx

∂f

∂y′

)
− y′

∂f

∂y

dh

dx
= y′

(
d

dx

∂f

∂y′
− ∂f

∂y

)
= 0

because y(x) must satisfy the Euler-Lagrange equation. QED.



Back to our hanging-chain problem. f(y, y′) = y
√
1 + y′2.

h ≡ y′
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If you formally study the Calculus of Variations, the “momentum”
trick is called the “first integral” of the E-L equation, and the
“energy” trick is called the “Baltrami identity.”

I mentioned them for two reasons: Most importantly, because we
will see mechanical analogues of these tricks in the next two weeks.
In the first case, “ignorable coordinates” (coordinates not
appearing in the Lagrangian) lead to “conserved (generalized)
momenta.” In the second case, conservation of energy is expressed
(in mechanics) by writing down a Hamiltonian function.

The second reason is that first-order ODEs are generally easier to
solve than second-order ODEs, so these two tricks can save effort
when using the E-L equation for optimization problems.

If you’re a physicist, you’ll often find that the easiest way to
remember a given math result is to remember the analogous
physics problem for which it is useful!



Now, a moment you’ve been waiting 2.5 weeks for!

In last weekend’s reading (the non-asterisk parts of Ch7), you saw
that the trajectory of a particle moving in potential U(x) follows
the “path of least action,” i.e. it follows the path x(t) for which
the “action” S[x(t)] is stationary:

S[x] =

∫
L(t, x, ẋ) dt =

∫ tf

ti

(T − U) dt

Feynman points out
http://www.feynmanlectures.caltech.edu/II_19.html

that to be precise, one should really call the Lagrangian approach
“the principle of stationary Hamilton’s first principal function.” But
most people say, more concisely, “the principle of least action.”

http://www.feynmanlectures.caltech.edu/II_19.html


Lagrangian mechanics: Use the Euler-Lagrange equation to find
the trajectory x(t) for which the “action” S[x] is stationary.

S[x] =

∫
L(t, x, ẋ) dt =

∫ tf

ti

(T − U) dt

Let’s give it a try for a particle of mass m dropped vertically from
a short distance x above Earth’s surface. For notational simplicity,
let the x axis point vertically upward. (I should draw this.)

First write down L(t, x, ẋ). (Try it!)

Then write the E-L equation: (which variables are which here?)

∂L
∂x

=
d

dt

∂L
∂ẋ

Then turn the crank and see what EOM pops out. (Try it!)
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OK, how about a block of mass m moving horizontally on a
frictionless table, under the influence of Hooke’s-Law potential

U =
1

2
kx2

so x = 0 when spring is at its equilibrium length.

Try writing down L, then using E − L equations to find EOM.

What EOM do we get for a general 1D potential U(x) ?
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When you use the E-L equation to optimize
∫
f(x, y, y′) dx, you

may be thinking globally, but the E-L equation is acting locally.

The y(x) that makes path length
∫ √

1 + y′2 dx optimal from
(0, 0) to (1, 1) will also make the path length optimal from
(0.4, 0.4) to (0.6, 0.6) or from (0.49, 0.49) to (0.51, 0.51).

∂f

∂y
=

d

dx

∂f

∂y′

is imposing a local requirement on y(x). It’s acting on each little
segment of the curve separately.



Similarly,

∂L
∂x

=
d

dt

∂L
∂ẋ

is enforcing ~F = m~a locally at each step in time. But the effect
is that the overall path optimizes the action S =

∫
Ldt.



A cart of mass m1 rolls horizontally without friction. The cart’s
position is x1. Inside the cart, a mass m2 is attached to the wall of
the cart with a spring (constant k). The position of m2 w.r.t. the
spring’s relaxed position is x2. So x2 is w.r.t. the cart, not w.r.t.
the ground. Write L(t, x1, ẋ1, x2, ẋ2).
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