
Physics 351 — Wednesday, January 31, 2018

I HW2 due Friday. Next weekend you’ll read the rest of Ch 7.

I HW help: Bill is in DRL 3N6 Wednesdays 4pm–7pm.
Grace is in DRL 2C2 Thursdays 5:30pm-8:30pm.

Before class: solve the hanging-chain problem by solving for x(y)
instead of solving for y(x). Write

U = µg

∫
y ds = µg

∫
y
√

1 + x′2 dy

Now we have
∫
dy f(y, x, x′), so the Euler-Lagrange equation

becomes

∂f

∂x
=

d

dy

∂f

∂x′

and we can use the “momentum conservation” trick.



At the end of Monday’s class, we solved the “hanging chain”
(catenary) problem in the most direct way, by finding y(x).

U = µg

∫
y ds = µg

∫
y
√
1 + y′2 dx

We wrote down

∂f

∂y
=

d

dx

∂f

∂y′

and after some messy algebra and a lot of cancellation we got

1 + (y′)2 − y y′′ = 0



Hanging chain – the first way (from Monday)



1 + y′2 − yy′′ = 0



A second way to approach this same problem is to solve for x(y)
instead of solving for y(x).

U = µg

∫
y ds = µg

∫
y
√
1 + x′2 dy

Now we have
∫
dyf(y, x, x′), so the Euler-Lagrange equation

becomes

∂f

∂x
=

d

dy

∂f

∂x′

Now we can use the “momentum conservation” trick, because
f(y, x, x′) is independent of x.



So the “conserved momentum” trick — f(y, x, x′) indep. of x,
which is analogous to L(t, x, ẋ) indep. of x — gave us a first-order
ODE (compare with 1 + y′2 − yy′′ = 0), which we could integrate
instead of having to guess a solution.





There is a second trick for getting a first-order ODE from the E-L
equation, which works if f(x, y, y′) = f(y, y′) is independent of x.
This trick turns out to be analogous to the total energy being
conserved, if L(t, x, ẋ) is independent of t.

Claim:
If f(x, y, y′) = f(y, y′) i.e. f(x, y, y′) is independent of x,
then any function y(x) that extremizes

∫
dx f(y, y′) satisfies

h ≡ y′
∂f

∂y′
− f(y, y′) = constant

In the context of mechanics, h will be the “Hamiltonian,” which
equals the (constant) total energy if L(t, x, ẋ) is independent of t.



Given: y(x) extremizes
∫
dx f(y, y′)

Claim:

h ≡ y′
∂f

∂y′
− f(y, y′) = constant

Proof:

dh

dx
= y′′

∂f

∂y′
+ y′

(
d

dx

∂f

∂y′

)
− ∂f

∂y

dy

dx
− ∂f

∂y′
dy′

dx

dh

dx
= y′′

∂f

∂y′
+ y′

(
d

dx

∂f

∂y′

)
− y′

∂f

∂y
− y′′

∂f

∂y′

dh

dx
= y′

(
d

dx

∂f

∂y′

)
− y′

∂f

∂y

dh

dx
= y′

(
d

dx

∂f

∂y′
− ∂f

∂y

)
= 0

because y(x) must satisfy the Euler-Lagrange equation. QED.



Back to our hanging-chain problem. f(y, y′) = y
√
1 + y′2.

h ≡ y′
∂f

∂y′
− f(y, y′) = constant



Back to our hanging-chain problem. f(y, y′) = y
√
1 + y′2.

h ≡ y′
∂f

∂y′
− f(y, y′) = constant



If you formally study the Calculus of Variations, the “momentum”
trick is called the “first integral” of the E-L equation, and the
“energy” trick is called the “Baltrami identity.”

I mention them for two reasons: Most importantly, because we will
see mechanical analogues of these tricks in the next two weeks. In
the first case, “ignorable coordinates” (coordinates not appearing
in the Lagrangian) lead to “conserved (generalized) momenta.” In
the second case, conservation of energy is expressed (in mechanics)
by writing down a Hamiltonian function.

The second reason is that first-order ODEs are generally easier to
solve than second-order ODEs, so these two tricks can save effort
when using the E-L equation for optimization problems.

If you’re a physicist, you’ll often find that the easiest way to
remember a given math result is to remember the analogous
physics problem for which it is useful!



Now, a moment you’ve been waiting 2.5 weeks for!

In last weekend’s reading (the non-asterisk parts of Ch7), you saw
that the trajectory of a particle moving in potential U(x) follows
the “path of least action,” i.e. it follows the path x(t) for which
the “action” S[x(t)] is stationary:

S[x] =

∫
L(t, x, ẋ) dt =

∫ tf

ti

(T − U) dt

Feynman points out (XC part of next weekend’s reading)
http://www.feynmanlectures.caltech.edu/II_19.html

that to be precise, one should really call the Lagrangian approach
“the principle of stationary Hamilton’s first principal function.” But
most people say, more concisely, “the principle of least action.”

http://www.feynmanlectures.caltech.edu/II_19.html


Lagrangian mechanics: Use the Euler-Lagrange equation to find
the trajectory x(t) for which the “action” S[x] is stationary.

S[x] =

∫
L(t, x, ẋ) dt =

∫ tf

ti

(T − U) dt

Let’s give it a try for a particle of mass m dropped vertically from
a short distance x above Earth’s surface. For notational simplicity,
let the x axis point vertically upward. (I should draw this.)

First write down L(t, x, ẋ). (Try it!)

Then write the E-L equation: (which variables are which here?)

∂L
∂x

=
d

dt

∂L
∂ẋ

Then turn the crank and see what EOM pops out. (Try it!)
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∫ tf

ti

(T − U) dt
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a short distance x above Earth’s surface. For notational simplicity,
let the x axis point vertically upward. (I should draw this.)

First write down L(t, x, ẋ). (Try it!)
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∂ẋ

Then turn the crank and see what EOM pops out. (Try it!)



OK, how about a block of mass m moving horizontally on a
frictionless table, under the influence of Hooke’s-Law potential

U =
1

2
kx2

so x = 0 when spring is at its equilibrium length.

Try writing down L, then using E − L equations to find EOM.

What EOM do we get for a general 1D potential U(x) ?
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When you use the E-L equation to optimize
∫
f(x, y, y′) dx, you

may be thinking globally, but the E-L equation is acting locally.

The y(x) that makes path length
∫ √

1 + y′2 dx optimal from
(0, 0) to (1, 1) will also make the path length optimal from
(0.4, 0.4) to (0.6, 0.6) or from (0.49, 0.49) to (0.51, 0.51).

∂f

∂y
=

d

dx

∂f

∂y′

is imposing a local requirement on y(x). It’s acting on each little
segment of the curve separately.



Similarly,

∂L
∂x

=
d

dt

∂L
∂ẋ

is enforcing ~F = m~a locally at each step in time. But the effect
is that the overall path optimizes the action S =

∫
Ldt.



Lagrangian mechanics: Use the Euler-Lagrange equation to find
the trajectory x(t) for which the “action” S[x] is stationary.

S[x] =

∫
L(t, x, ẋ) dt =

∫ tf

ti

(T − U) dt

As most of you quoted last weekend:

(1) Write down the K.E. and P.E. and hence the Lagrangian
L = T − U using any convenient inertial reference frame.

(2) Choose a convenient set of n generalized coordinates qi and
solve for original coords (from step 1) in terms of q1 . . . qn.

(3) Rewrite L in terms of qi and q̇i.

(4) Write down the n Lagrange equations.

∂L
∂qi

=
d

dt

∂L
∂q̇i

Let’s work through several examples together, starting from some
basic one-variable cases, then becoming more complicated.



After writing down L, use Lagrange eqns to write EOM for x(t),
i.e. the expression for ẍ.





Reading question: “Does the Lagrangian method still work if one
chooses generalized coordinates relative to a non-inertial reference
frame? If so, is there some precaution one needs to take in writing
down the Lagrangian?”

Yes: Lagrange’s equations are true for any choice of generalized
coordinates, even if they are relative to a non-inertial frame. One
just has to be careful to write the Lagrangian L=T-U in an inertial
frame.



A cart of mass m1 rolls horizontally without friction. The cart’s
position is x1. Inside the cart, a mass m2 is attached to the wall of
the cart with a spring (constant k). The position of m2 w.r.t. the
spring’s relaxed position is x2. So x2 is w.r.t. the cart, not w.r.t.
the ground. Write L(t, x1, ẋ1, x2, ẋ2).



By the way, notice that x1 is an “ignorable” (a.k.a. “cyclic”)
coordinate, i.e. ∂L/∂x1 = 0. The corresponding conserved
quantity is the momentum of the CM, m1ẋ1 +m2(ẋ1 + ẋ2).





Consider a pendulum made of a spring with a mass m on the end.
The spring is arranged to lie in a straight line (e.g. by wrapping
the spring around a massless rod). The equilibrium length of the
spring is `. Let the spring have length `+ x(t), and let its angle
w.r.t. vertical be θ(t). Assuming the motion takes place in a
vertical plane, write Lagrangian and find EOM for x and θ.
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