Physics 351 — Friday, February 2, 2018

» Pick up HW3 handout. It's also online as a PDF.

» Turn in HW2. We prefer for you to write your name only on
the back page of your homework, so that we can avoid
knowing whose paper we're grading, until the end.

> This weekend you'll read the rest of Ch 7.

A cart of mass m rolls horizontally without friction.

The cart's position is x1. Inside the cart, a mass ms is attached to
the wall of the cart with a spring (constant k). The position of ms
w.r.t. the spring’s relaxed position is 3. So x5 is w.r.t. the cart,
not w.r.t. the ground. Write L(t,x1, %1, x2,12).



Reading question: “Does the Lagrangian method still work if one
chooses generalized coordinates relative to a non-inertial reference
frame? If so, is there some precaution one needs to take in writing
down the Lagrangian?”

Yes: Lagrange's equations are true for any choice of generalized
coordinates, even if they are relative to a non-inertial frame. One
just has to be careful to write the Lagrangian L=T-U in an inertial
frame.



A cart of mass my rolls horizontally without friction. The cart's
position is z1. Inside the cart, a mass ms is attached to the wall of
the cart with a spring (constant k). The position of mg w.r.t. the
spring’s relaxed position is x2. So x2 is w.r.t. the cart, not w.r.t.
the ground. Write L(t,x1, &1, 29, @2).
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By the way, notice that z is an “ignorable” (a.k.a. “cyclic”)
coordinate, i.e. 9L/0x1 = 0. The corresponding conserved
quantity is the momentum of the CM, my@1 + mo(&1 + &2).
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Consider a pendulum made of a spring with a mass m on the end.
The spring is arranged to lie in a straight line (e.g. by wrapping
the spring around a massless rod). The equilibrium length of the
spring is £. Let the spring have length ¢ 4 z(t), and let its angle
w.r.t. vertical be §(t). Assuming the motion takes place in a
vertical plane, write Lagrangian and find EOM for x and 6.
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8. A rigid T consists of a long rod glued perpendicular

to another rod of length [ that is pivoted at the ori- m
gin. The T rotates around in a horizontal plane with
constant frequency w. A mass m is free to slide along

the long rod and is connected to the intersection of the ®
rods by a spring with spring constant & and relaxed ™\
length zero (see figure). Find r(t), where 7 is the posi- /

tion of the mass along the long rod. There is a special

value of w. What is it, and why is it special?

[If you're feeling clever, you might want to solve Problem 9 first and then just
set g = 0 to solve Problem 8]

(top view)

9. Consider the setup in Problem 8, but now let the T swing around in
a vertical plane with constant frequency w. Find r(f). There is a special
value of w. What is it, and why is it special? (You may assume w < y/k/m.)
[You will find that whereas Problem 8 was a “free oscillation” problem, instead

Problem 9 is a “forced oscillation” problem. So you get to use what we learned
in Chapter 5, after using the Lagrangian approach to write the equation of
motion.]

Note: in problems like this, if you find a clever way to evaluate the
kinetic energy, you can save yourself a huge amount of algebra.



v ClearAll["Global %"];

y[t ] t= r[t] Cos[wt] + LSin[w t]}
X[t ] t= lCos[wt] - r[t] Sin[w t];
y'[t]

lwCos[tw] ~wr(t] Sin[tw] +Cos[tw] r'[t]

v X'[t]

~wCos[tw] r(t] -lwSin[tw] -Sin[tw] r[t]

v FullSimplify[x'[t]"2 + y'[t]"2]

wir(t)?*+ (lw+r[t])?



One problem from HW1 (Q10) illustrated an interesting idea that
reappears this week on HW3 (Q10): work done against (or by) the
centripetal force of an object in circular motion of changing radius.

A coffee cup of mass M is connected to a mass
m by a string. The coffee cup hangs over a frictionless
pulley of negligible size, and the mass m is initially held
with the string horizontal, as shown in the figure. The
mass m is then released. (a) Find the EOM for r (the
length of string between m and the pulley) and # (the
angle that the string to m makes with the horizontal).
Assume that m somehow doesn’t run into the string
holding the cup up. The coffee cup will initially fall,
but it turns out that it will reach a lowest point and
then rise back up. (b) Use Mathematica (or similar) to
determine numerically the ratio of the r at this lowest
point to the r at the start, as a function of the value of
m/M. (To check your computation, a value of m/M =
1/10 yields a ratio of about 0.208.)

m

e

Crucial hint: the two coupled EOM can't be solved analytically.
Use NDSolveValue then FindMinimum in Mathematica.



| defined = m/M, let 7o = 1, then let eql and eq2 be the EOM
for # and 6 respectively, in terms of . Then NDSolveValue to
numerically solve for r(t) and 6(t), then FindMinimum (with a
starting point of ¢ &~ 0.01) to find = (which is same r/rg, since
ro = 1) at its turn-around point. It's also fun to graph r(¢).
ClearAll["global +"];
mu = @.1;
g = 9.8;
eql := (mu+1) r''[t] = mur[t] theta'[t]"2 + (censored) H
eq2 := (censored) + rit]theta''[t] = gCos[theta[t]];
Plot(
rsoln =
NDSolveValue[{eql, eq2, theta[@] == 0, theta'([0] =0, r[0] =1, r'[0] == 0},
{r[t], theta[t]}, {t, @, 2}][[1]];
rmin = FindMinimum[rsoln, {t, ©.01}][[1]],
{mu, 0, 2}]



Here's my graph of r/rg (at turnaround point) vs. m/M (with
axis scales censored).

Outfa7s)




Checking that ryin/ro = 0.208 for m/M = 1/10

- ClearAll["global «"];

mu = 0.1;
g = 9.8;
eql := (mu+1) r''[t] = mur[t] theta'[t]*2 + (censored) ;

eq2 := (censored) + r[t] theta''[t] = gCos[theta[t]];

bothsolns =

NDSolveValue[{eql, eq2, theta[@] =@, theta'[0] =0, r[0] =1, r'[0] =0},
{rit], theta[t]l}, {t, 0, 2}]

Domain: {{0., 2.}} ] (1,

IS {Interp(ﬂ-at"”gFUHCt"O”[ Output: scalar

InterpolatingFunction { bomain: {{0., 2.3} ] [t }

Output: scalar

- rsoln = bothsolns[[1]]

| Domain: {{0., 2.}

= InterpolatingFunction { | Output: scalar

[I83)

- FindMinimum[rsoln, {t, 0.01}]

= {0.207629, {t > 0.483041}}



Graphing r(t) and 5-0(t) for the m/M = 1/10 case
. bothsolns =
NDSolveValue[{eql, eq2, theta[@] == O, theta'[0] =0,
r(@] =1, r'[0] =0}, {r[t], theta[t]}, {t, 0, 2}];
rsoln = bothsolns[[1]];
thetasoln = bothsolns[[2]]3
Plot[{rsoln, thetasoln/ (2Pi)}, {t, 0, 1}]
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Non-linear behavior is evident at large amplitude!!
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Here was HW1/q10, containing a similar idea:

A particle of mass m is moving on a frictionless horizontal table and is
attached to a massless string, whose other end passes through a hole in the
table, where I am holding it. (a) Initially the particle is moving in a circle
of radius ry with angular velocity wy, but I now pull the string down through
the hole until a length r remains between the hole and the particle. What is
the particle’s angular velocity now? (b) Now let’s see what happens during
the pull described in part (a). Initially the particle is moving in a circle of
radius rp with angular velocity wy. Starting at ¢ = 0, I pull the string with
constant velocity v so that the radial distance () to the mass decreases. Draw
a force diagram for the mass and find a differential equation for w(t). Find
w(t) and also find the force F'(¢) that I need to exert on the string. [Hint: one
component of the force exerted on m by the string is always zero.]
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(We're not going to go through this again! But here it is.)
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(You can look at this if you're interested, but we're not going to go
through it. | just thought it was interesting to notice that the
change in K.E. of the mass-on-string equals the work done by
whatever force is pulling the string beneath the table.) The
relevance for the coffee-cup problem is that as the mass-on-string
gains angular velocity, the tension in the string increases.

| have a fun mechanical demonstration of the coffee-cup
problem (using pulleys), we could probably do Monday!



This problem will reappear in the text of Taylor's Ch9 (“mechanics
in non-inertial frames”), so let's work through it by writing the
Lagrangian w.r.t. an inertial frame.
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(7.30) A pendulum is suspended inside a railroad car that is forced
to accelerate at constant acceleration a.

(a) Write down L and find EOM for ¢.

(b) Let tan 8 =a/g, so g = /g% + a?cos B, a = \/g? + a?sin 5.
Simplify using sin(¢ + ) = cos 5 sin ¢ + sin (3 cos ¢.

(c) Find equilibrium angle ¢y. Use EOM to show ¢ = ¢y is stable.
Find frequency of small oscillations about ¢yg.

a (given)
_—
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I HW3 XC7 is the “three
sticks” generalization of this
¥ problem. Let's try the “two
m sticks” version.

Two massless sticks of length 27, each with a mass m fixed at its
middle, are hinged at an end. One stands on top of the other. The
bottom end of the lower stick is hinged on the ground. They are
held such that the lower stick is vertical, and the upper one is
tilted at a small angle € w.r.t. vertical. They are then released. At
the instant after release, what are the angular accelerations of the
two sticks? Work in the approximation where ¢ < 1.



- Lt W= T8,

o= LC CokS, + rCard

u =Wy (v, 4«‘,,1) =My ("(3(&58—' + (“Sgb)

e
=D X, = o &,

%= 2(‘&7/\&' et (\&7/\&2 — X, = Zrmjg‘ &, ~FQOJSLS-L

\

. o s @ (]

\j : = e L f\g’,@' jZ = "2,(".37/\8»' 9’ = rg)/\&-"é(‘
WA [ I ;?' -

T = 3( +j + XL J'r'. ) - 1 %

2 LR}
“ML—%SSE + e 88‘ *'fuu&é'? +Qo;97_97/ —L{Cags«(‘.a;s Q,QL

+HS”\19 G + SML&‘,S‘L + Y2108, Singy .9@ N

T= “"”L[S“& +6, - 46,8, m(&f@z N—LXS& @&Q-‘%@L)]



- 'rm = T

i /Ez/”

o Yoo =20 88 + sy

{ WA
7

Ve e a2 u \\Mj k‘.’l""h,> ?—TM‘?('LBQQS—' +(«SQ—L)

¥ =rCine, - >‘<, = rCse &
K= 20sing, = 08NS, 3 X = 2reasd, &, — M Cors, &

° - — @ * ]
g, == rund & Yy, = —err,\@-l& UESZCN Y

U= mgr ('Sug 8 + cDg&L) o Mjr<gw—‘§g+ = i;)
i CNE % @(S“S?Ld"éi-qé’féz COS(G‘( MY—)J = Njf‘(gwg,‘f(a_@z)

(8 'W\f' s & L GL
g (25 4



;L C«f‘ (18 “i& ‘%f‘ (gl = L;:‘ )
M .

&t‘)& -
oyt "f’%(& 23, A%Eﬁ;

dt 98, _‘ —
i)‘—l__: JL i o8 & - 6" 7!
&&i8, T doe N i b2 =% j___{\z_

Now plug in, at t = 0, given conditigns 01 =0, 03 = ¢, and find

initial angular accelerations 61 and 6,.
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» Pick up HW3 handout. It's also online as a PDF.

» Turn in HW2. We prefer for you to write your name only on
the back page of your homework, so that we can avoid
knowing whose paper we're grading, until the end.

» This weekend you'll read the rest of Ch 7.



