Physics 351 — Monday, February 5, 2018

» HW3 due Friday. You finished reading ch7 for today.

» Tomorrow, Feb 6, undergrad groups WiP and SPS can meet
with Musk Public Lecture speaker, Dr. Jim Gates, for an
informal lunch: Tue 1:30pm-2:30pm in DRL 4N12.

» Public lecture Tue 5pm, Meyerson B1: "Will Evolution and
Information Theory Provide the Fundamentals of Physics?”

» Gates was awarded the National Medal of Science from
President Barack Obama in 2013. His work has produced first
introductions of concepts in physics including the complete
extension of Einstein’s geometrical concepts to the theory of
supergravity, genuine four-dimensional string theory based on
Standard Model concepts, maximal SUSY Chern-Simons
theories, and more. His co-authored book, Superspace, or One
Thousand and One Lessons in Supersymmetry, is the first
published comprehensive book on supersymmetry.

» Dr. Sylvester James Gates, Jr., is currently Ford Foundation
Professor of Physics at Brown University.



8. A rigid T consists of a long rod glued perpendicular

to another rod of length [ that is pivoted at the ori- m
gin. The T rotates around in a horizontal plane with
constant frequency w. A mass m is free to slide along

the long rod and is connected to the intersection of the ®
rods by a spring with spring constant & and relaxed ™\
length zero (see figure). Find r(t), where 7 is the posi- /

tion of the mass along the long rod. There is a special

value of w. What is it, and why is it special?

[If you're feeling clever, you might want to solve Problem 9 first and then just
set g = 0 to solve Problem 8]

(top view)

9. Consider the setup in Problem 8, but now let the T swing around in
a vertical plane with constant frequency w. Find r(f). There is a special
value of w. What is it, and why is it special? (You may assume w < y/k/m.)
[You will find that whereas Problem 8 was a “free oscillation” problem, instead

Problem 9 is a “forced oscillation” problem. So you get to use what we learned
in Chapter 5, after using the Lagrangian approach to write the equation of
motion.]

Note: in problems like this, if you find a clever way to evaluate the
kinetic energy, you can save yourself a huge amount of algebra.



v ClearAll["Global %"];

y[t ] t= r[t] Cos[wt] + LSin[w t]}
X[t ] t= lCos[wt] - r[t] Sin[w t];
y'[t]

lwCos[tw] ~wr(t] Sin[tw] +Cos[tw] r'[t]

v X'[t]

~wCos[tw] r(t] -lwSin[tw] -Sin[tw] r[t]

v FullSimplify[x'[t]"2 + y'[t]"2]

wir(t)?*+ (lw+r[t])?



One problem from HW1 (Q10) illustrated an interesting idea that
reappears this week on HW3 (Q10): work done against (or by) the
centripetal force of an object in circular motion of changing radius.

A coffee cup of mass M is connected to a mass
m by a string. The coffee cup hangs over a frictionless
pulley of negligible size, and the mass m is initially held
with the string horizontal, as shown in the figure. The
mass m is then released. (a) Find the EOM for r (the
length of string between m and the pulley) and # (the
angle that the string to m makes with the horizontal).
Assume that m somehow doesn’t run into the string
holding the cup up. The coffee cup will initially fall,
but it turns out that it will reach a lowest point and
then rise back up. (b) Use Mathematica (or similar) to
determine numerically the ratio of the r at this lowest
point to the r at the start, as a function of the value of
m/M. (To check your computation, a value of m/M =
1/10 yields a ratio of about 0.208.)

m

e

Crucial hint: the two coupled EOM can't be solved analytically.
Use NDSolveValue then FindMinimum in Mathematica.



| defined = m/M, let 7o = 1, then let eql and eq2 be the EOM
for # and 6 respectively, in terms of . Then NDSolveValue to
numerically solve for r(t) and 6(t), then FindMinimum (with a
starting point of ¢ &~ 0.01) to find = (which is same r/rg, since
ro = 1) at its turn-around point. It's also fun to graph r(¢).
ClearAll["global +"];
mu = @.1;
g = 9.8;
eql := (mu+1) r''[t] = mur[t] theta'[t]"2 + (censored) H
eq2 := (censored) + rit]theta''[t] = gCos[theta[t]];
Plot(
rsoln =
NDSolveValue[{eql, eq2, theta[@] == 0, theta'([0] =0, r[0] =1, r'[0] == 0},
{r[t], theta[t]}, {t, @, 2}][[1]];
rmin = FindMinimum[rsoln, {t, ©.01}][[1]],
{mu, 0, 2}]



Here's my graph of r/rg (at turnaround point) vs. m/M (with
axis scales censored).

Outfa7s)




Checking that ryin/ro = 0.208 for m/M = 1/10

- ClearAll["global «"];

mu = 0.1;
g = 9.8;
eql := (mu+1) r''[t] = mur[t] theta'[t]*2 + (censored) ;

eq2 := (censored) + r[t] theta''[t] = gCos[theta[t]];

bothsolns =

NDSolveValue[{eql, eq2, theta[@] =@, theta'[0] =0, r[0] =1, r'[0] =0},
{rit], theta[t]l}, {t, 0, 2}]

Domain: {{0., 2.}} ] (1,

IS {Interp(ﬂ-at"”gFUHCt"O”[ Output: scalar

InterpolatingFunction { bomain: {{0., 2.3} ] [t }

Output: scalar

- rsoln = bothsolns[[1]]

| Domain: {{0., 2.}

= InterpolatingFunction { | Output: scalar

[I83)

- FindMinimum[rsoln, {t, 0.01}]

= {0.207629, {t > 0.483041}}



Graphing r(t) and 5-0(t) for the m/M = 1/10 case
. bothsolns =
NDSolveValue[{eql, eq2, theta[@] == O, theta'[0] =0,
r(@] =1, r'[0] =0}, {r[t], theta[t]}, {t, 0, 2}];
rsoln = bothsolns[[1]];
thetasoln = bothsolns[[2]]3
Plot[{rsoln, thetasoln/ (2Pi)}, {t, 0, 1}]
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Non-linear behavior is evident at large amplitude!!

t: 0 =

Cul[10]=
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Here was HW1/q10, containing a similar idea:

A particle of mass m is moving on a frictionless horizontal table and is
attached to a massless string, whose other end passes through a hole in the
table, where I am holding it. (a) Initially the particle is moving in a circle
of radius ry with angular velocity wy, but I now pull the string down through
the hole until a length r remains between the hole and the particle. What is
the particle’s angular velocity now? (b) Now let’s see what happens during
the pull described in part (a). Initially the particle is moving in a circle of
radius rp with angular velocity wy. Starting at ¢ = 0, I pull the string with
constant velocity v so that the radial distance () to the mass decreases. Draw
a force diagram for the mass and find a differential equation for w(t). Find
w(t) and also find the force F'(¢) that I need to exert on the string. [Hint: one
component of the force exerted on m by the string is always zero.]
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(We're not going to go through this again! But here it is.)
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(You can look at this if you're interested, but we're not going to go
through it. | just thought it was interesting to notice that the
change in K.E. of the mass-on-string equals the work done by
whatever force is pulling the string beneath the table.) The
relevance for the coffee-cup problem is that as the mass-on-string
gains angular velocity, the tension in the string increases.



This problem will reappear in the text of Taylor's Ch9 (“mechanics
in non-inertial frames”), so let's work through it by writing the
Lagrangian w.r.t. an inertial frame.
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(7.30) A pendulum is suspended inside a railroad car that is forced
to accelerate at constant acceleration a.

(a) Write down L and find EOM for ¢.

(b) Let tan 8 =a/g, so g = /g% + a?cos B, a = \/g? + a?sin 5.
Simplify using sin(¢ + ) = cos 5 sin ¢ + sin (3 cos ¢.

(c) Find equilibrium angle ¢y. Use EOM to show ¢ = ¢y is stable.
Find frequency of small oscillations about ¢yg.

a (given)
_—
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The above-right figure is a bird’s-eye view of a smooth horizontal wire hoop
that is forced to rotate at a fixed angular frequency w about a vertical axis
through the point A. A bead of mass m is threaded on the hoop and is free
to move around it, with its position specified by the angle ¢ that it makes at
the center with the diameter AB. Find the Lagrangian for this system using
¢ as your generalized coordinate. Use the Lagrange EOM to show that the
bead oscillates about the point B exactly like a simple pendulum. What is
the frequency of these oscillations if their amplitude is small?

Next slide shows a handy trick that is helpful when you're able to
write @, = fpoint + Trelative-

Next-next slide shows how to use Mathematica to eliminate the
drudgery of calculating 7.






ClearAll["Global " «"];

X[t ] := RCos[¢[t] +w t] + RCos[w t];
y[t ] t= RSin[¢[t] + o t] + RSin[w t]}
X'[t]A2 + y'[t]A2

(RwCos[tw] +RCos[tw+p[t]] (w+d [t]))?+
(-RwSin[tw] -RSin[tw+¢[t]] (w+¢' [t]))?
FullSimplify[%]

R* (2w? (1+Cos[é[t]]) +2w (1+Cos[¢(t]]) ¢ [t] + ¢ [t)?)

Expand [%]

2RPw? +2R*w? Cos[p[t]] +
2RPwe [t] +2R?*wCos[o[t]] ¢ [t] +RP ¢’ [t])?



The figure shows a simple pendulum (mass m,
length {) whose point of support P is attached to the
edge of a wheel (center O, radius R) that is forced to
rotate at a fixed angular velocity w. At { = 0, the
point P is level with O on the right. Write down the
Lagrangian and find the EOM for the angle ¢. [Hint:
Be careful writing down T', the K.E. A safe way to get
the velocity right is to write down the position of the
bob at time ¢, and then differentiate.] Check that your
answer makes sense in the special case w = 0.

Next slide shows how to use Mathematica to eliminate the
drudgery of calculating T.



ClearAll["Global «"];

x[t ] t= RCos[wt] + LSin[¢[t]];
y[t ] := RSin[wt] - LCos[o[t]];
x'"[t]1*2 + y'[t]n2

(-RwSin[tw] + LCos[¢[t]] ¢’ [t]) %+
(RwCos[t ]+1.S'|n[qb[t]]qtﬁ’[t])2

FullSimplify[%]
RZw2+1¢'[t) (-2RwSin[tw-¢[t]] + Lo [t])



I HW3 XC7 is the “three
sticks” generalization of this
¥ problem. Let's try the “two
m sticks” version.

Two massless sticks of length 27, each with a mass m fixed at its
middle, are hinged at an end. One stands on top of the other. The
bottom end of the lower stick is hinged on the ground. They are
held such that the lower stick is vertical, and the upper one is
tilted at a small angle € w.r.t. vertical. They are then released. At
the instant after release, what are the angular accelerations of the
two sticks? Work in the approximation where ¢ < 1.
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Now plug in, at t = 0, given conditigns 01 =0, 03 = ¢, and find

initial angular accelerations 61 and 6,.
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