Physics 351 — Wednesday, February 7, 2018

» HW3 due Friday. You finished reading ch7 last weekend.
You'll read ch8 (Kepler problem) this weekend.

» HW help: Bill is in DRL 3N6 Wednesdays 4pm—7pm.
Grace is in DRL 2C2 Thursdays 5:30pm-8:30pm.
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(7.30) A pendulum is suspended inside a railroad car that is forced
to accelerate at constant acceleration a.

(a) Write down £ and find EOM for ¢.

a (given)
—




One interesting feature of this problem is that it is non-linear and
cannot be solved analytically. In fact, at very large amplitude it
behaves chaotically: something we will briefly explore when you
read chapter 12 toward the end of the semester. (For now this is

just a digression.)

A coffee cup of mass M is connected to a mass
m by a string. The coffee cup hangs over a frictionless
pulley of negligible size, and the mass m is initially held
with the string horizontal, as shown in the figure. The
mass m is then released. (a) Find the EOM for r (the
length of string between m and the pulley) and # (the
angle that the string to m makes with the horizontal).
Assume that m somehow doesn’t run into the string
holding the cup up. The coffee cup will initially fall,
but it turns out that it will reach a lowest point and
then rise back up. (b) Use Mathematica (or similar) to
determine numerically the ratio of the r at this lowest
point to the r at the start, as a function of the value of
m/M. (To check your computation, a value of m/M =

1/10 yields a ratio of about 0.208.)

m

M @

Crucial hint: the two coupled EOM can't be solved analytically.

Use NDSolveValue then FindMinimum in Mathematica.



Non-linear behavior is evident at large amplitude!! (Graph by 2015
student Noah Rubin — he did this just for fun.)
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This problem will reappear in the text of Taylor's Ch9 (“mechanics
in non-inertial frames”), so let's work through it by writing the
Lagrangian w.r.t. an inertial frame.
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(7.30) A pendulum is suspended inside a railroad car that is forced
to accelerate at constant acceleration a.

(a) Write down L and find EOM for ¢.

(b) Let tan 8 =a/g, so g = /g% + a?cos B, a = \/g? + a?sin 5.
Simplify using sin(¢ + ) = cos 5 sin ¢ + sin (3 cos ¢.

(c) Find equilibrium angle ¢y. Use EOM to show ¢ = ¢y is stable.
Find frequency of small oscillations about ¢yg.

a (given)
_—
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The above-right figure is a bird’s-eye view of a smooth horizontal wire hoop
that is forced to rotate at a fixed angular frequency w about a vertical axis
through the point A. A bead of mass m is threaded on the hoop and is free
to move around it, with its position specified by the angle ¢ that it makes at
the center with the diameter AB. Find the Lagrangian for this system using
¢ as your generalized coordinate. Use the Lagrange EOM to show that the
bead oscillates about the point B exactly like a simple pendulum. What is
the frequency of these oscillations if their amplitude is small?

Next slide shows a handy trick that is helpful when you're able to
write @, = fpoint + Trelative-

Next-next slide shows how to use Mathematica to eliminate the
drudgery of calculating 7.






ClearAll["Global " «"];

X[t ] := RCos[¢[t] +w t] + RCos[w t];
y[t ] t= RSin[¢[t] + o t] + RSin[w t]}
X'[t]A2 + y'[t]A2

(RwCos[tw] +RCos[tw+p[t]] (w+d [t]))?+
(-RwSin[tw] -RSin[tw+¢[t]] (w+¢' [t]))?
FullSimplify[%]

R* (2w? (1+Cos[é[t]]) +2w (1+Cos[¢(t]]) ¢ [t] + ¢ [t)?)

Expand [%]

2RPw? +2R*w? Cos[p[t]] +
2RPwe [t] +2R?*wCos[o[t]] ¢ [t] +RP ¢’ [t])?
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ClearAll["Global +"];
¢ = 03wt = 13
Manipulate|
r=1; xc = rCos[wt]; yc = rSin[wt];
c = {xc, yc}; a = {0, 0}; b = 2¢;}
xyrelative = r {Cos[wt + ¢], Sin[wt + ¢]}}
Graphics|[{
Circle[c, r],
Line[{a, b}],
Disk[c + xyrelative, 0.05r],
Dashed,
Line[{c, c + xyrelative}]
}s
PlotRange » {{-2.1, 2.1}, {-2.1, 2.1}},
PlotRangeClipping » True, Frame » True],
{¢, 0, 27}, {wt, 0, 27},
LabelStyle -» Large]



The figure shows a simple pendulum (mass m,
length {) whose point of support P is attached to the
edge of a wheel (center O, radius R) that is forced to
rotate at a fixed angular velocity w. At { = 0, the
point P is level with O on the right. Write down the
Lagrangian and find the EOM for the angle ¢. [Hint:
Be careful writing down T', the K.E. A safe way to get
the velocity right is to write down the position of the
bob at time ¢, and then differentiate.] Check that your
answer makes sense in the special case w = 0.

Next slide shows how to use Mathematica to eliminate the
drudgery of calculating T.



ClearAll["Global «"];

x[t ] t= RCos[wt] + LSin[¢[t]];
y[t ] := RSin[wt] - LCos[o[t]];
x'"[t]1*2 + y'[t]n2

(-RwSin[tw] + LCos[¢[t]] ¢’ [t]) %+
(RwCos[t ]+1.S'|n[qb[t]]qtﬁ’[t])2

FullSimplify[%]
RZw2+1¢'[t) (-2RwSin[tw-¢[t]] + Lo [t])



I HW3 XC7 is the “three
sticks” generalization of this
¥ problem. Let's try the “two
m sticks” version.

Two massless sticks of length 27, each with a mass m fixed at its
middle, are hinged at an end. One stands on top of the other. The
bottom end of the lower stick is hinged on the ground. They are
held such that the lower stick is vertical, and the upper one is
tilted at a small angle € w.r.t. vertical. They are then released. At
the instant after release, what are the angular accelerations of the
two sticks? Work in the approximation where ¢ < 1.
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Now plug in, at t = 0, given conditigns 01 =0, 03 = ¢, and find

initial angular accelerations 61 and 6,.






Math 114 problem: find the point (z,y) that minimizes

Uz,y) = mgy/a? +y?

subject to the constraint y —x = 1.
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Let f(z,y) =y —2 — 1. Then 2
minimize the modified function
V(z,y) =U(z,y) + Af(z,y)
w.r.t. variables z, y, and A. !
A y
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The added variable A is called a Lagran-ge ml;ItipIier.
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Let f(xz,y) =y —x — 1. Then pik”

minimize the modified function

V(z,y) =U(z,y) + Af(z,y)

w.r.t. variables z, y, and \.

interpretation: notice VU x Vf
— the two gradients are parallel, . &

or antiparallel
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(Taylor 7.51) Write down L for a
pendulum in rectangular
coordinates = and ¥, subject to

0=f(z,y)=Va?+y> L

Write down the modified Lagrange equations.

Comparing with F' = md, show that X is (minus) the tension in
the rod.

Show that \df/0x is the component of Fr in the x direction and
that A0 f /0y is the component of Fr in the y direction.
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What if instead we had written f(x,y) = 22+ 4% — 2 =07 Try it!

You should find that X itself no longer equals (in magnitude) the
tension, but that it is still true that AJf/Jdx = Fr, and that
NOf )0y = Fr,.



What if instead we had written f(x,y) = 22+ 4% — 2 =07 Try it!

You should find that X itself no longer equals (in magnitude) the
tension, but that it is still true that AJf/Jdx = Fr, and that

\Of /Oy = Fr,.
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(Taylor 7.52) Lagrange multipliers also work with non-Cartesian
coordinates. A mass m hangs from a string, the other end of
which is wound several times around a wheel (radius R, moment of
inertia ) mounted on a frictionless horizontal axle. Let x be
distance fallen by m, and let ¢ be angle wheel has turned.

Write modified Lagrange equations. Solve for &, for ¢, and for .
Use Newton's 2nd law to check & and ¢.
Show that AOf/0x = Fr .

What is your interpretation of the quantity AJf/d¢ ?
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Physics 351 — Wednesday, February 7, 2018

» HW3 due Friday. You finished reading ch7 last weekend.
You'll read ch8 (Kepler problem) this weekend.

> HW help: Bill is in DRL 3N6 Wednesdays 4pm—7pm.
Grace is in DRL 2C2 Thursdays 5:30pm-8:30pm.



