
Physics 351 — Wednesday, February 14, 2018

I HW4 due Friday. For HW help, Bill is in DRL 3N6 Wed
4–7pm. Grace is in DRL 2C2 Thu 5:30–8:30pm.

I Respond at pollev.com/phys351 or text PHYS351 to 37607
once to join, then A, B, or C.

A mass m hangs from a string, the other end of
which is wound several times around a wheel
(radius R, moment of inertia I). The wheel is
mounted on a frictionless horizontal axle. The
string is wound tightly and does not slip, so the
wheel must turn as the string lengthens. Let x be
the distance fallen by m. Using
T = 1

2mẋ
2 + 1

2I(ẋ/R)2 and U = −mgx, write
the Lagrangian and find the EOM for ẍ.

(A) ẍ = g (B) ẍ = g
1 + (mR2)/I (C) ẍ = g

1 + I/(mR2)



Now suppose we wanted, in the same Lagrangian problem you just
solved, to find the tension in the string? Annoyingly, the
“Lagrange multiplier” formalism now requires us to solve for three
unknowns (ẍ, φ̈, and λ) instead of just one. Let’s try it.

(Taylor 7.52) Lagrange multipliers also work with non-Cartesian
coordinates. A mass m hangs from a string, the other end of
which is wound several times around a wheel (radius R, moment of
inertia I) mounted on a frictionless horizontal axle. Let x be
distance fallen by m, and let φ be angle wheel has turned.

Write modified Lagrange equations. Solve for ẍ, for φ̈, and for λ.

Use Newton’s 2nd law to check ẍ and φ̈. (You already did, before
class.)

Show that λ∂f/∂x = FT,x.

What is your interpretation of the quantity λ∂f/∂φ ?







A ring of mass M hangs from a thread, and two beads of mass m
slide on it without friction. The beads are released simultaneously
from rest at the top of the ring and slide down opposite sides.
Show that the ring will start to rise if m > 3

2M , and find the angle
θ at which this occurs. (If M = 0 then cos θ = 2

3 .)

Write L(θ, θ̇, Y, Ẏ ) and include Lagrange multiplier term λY to
enforce the Y = 0 constraint. “The ring starts to rise” implies
λ = 0, i.e. string tension is zero.





Now you can impose the constraint that Y ≡ 0, exploit the helpful
fact that mechanical energy of each bead is constant (as long as
Y ≡ 0), and solve for the condition that the force of constraint
equals zero when the ring just barely starts to rise. You’ll get a
quadratic equation for cos θ in terms of the ratio 3M/2m.





Non-uniqueness of the Lagrangian.

In classical mechanics, finding the path ~x(t) that makes L
stationary is an elegant (and usually labor-saving) trick that helps
us to find the EOM that ~F = m~a would have given us anyway.

Our only demand on L is that it give us the correct EOM.

If you happen to have one L that gives you the correct EOM, it is
easy to find another: Consider

L′ = L+
d

dt
F (~rα, t)

We’ve added to L the total time derivative of a function F (~rα, t),
where F can be a function of the particles’ positions and of time,
but F cannot be a function of the particles’ velocities.

Claim: L′ gives the same EOM as L.



To keep the notation simpler, use just two coordinates, x and y

L′(x, ẋ, y, ẏ, t) = L(x, ẋ, y, ẏ, t) +
dF (x, y, t)

dt

The equations of motion for the original Lagrangian, L, are

∂L
∂x

=
d

dt

∂L
∂ẋ

∂L
∂y

=
d

dt

∂L
∂ẏ

So the claim is that the same x(t) and y(t) the satisfy the above
EOM also satisfy

∂L′

∂x
=

d

dt

∂L′

∂ẋ

∂L′

∂y
=

d

dt

∂L′

∂ẏ

To prove this, we will show that for arbitrary x(t) and y(t),

∂(L′ − L)

∂x
=

d

dt

∂(L′ − L)

∂ẋ

∂(L′ − L)

∂y
=

d

dt

∂(L′ − L)

∂ẏ



L′(x, ẋ, y, ẏ, t) = L(x, ẋ, y, ẏ, t) +
dF (x, y, t)

dt

We want to show that (“LHS” = “RHS”):

∂(L′ − L)

∂x
=

d

dt

∂(L′ − L)

∂ẋ

Writing out the total derivative dF/dt:

dF (x, y, t)

dt
=
∂F

∂x
ẋ+

∂F

∂y
ẏ +

∂F

∂t

Plugging this dF/dt into the LHS:

∂(L′ − L)

∂x
=

∂

∂x

dF (x, y, t)

dt
=

∂

∂x

∂F

∂x
ẋ+

∂

∂x

∂F

∂y
ẏ +

∂

∂x

∂F

∂t

Then plugging same dF/dt into the RHS:

d

dt

∂(L′ − L)

∂ẋ
=

d

dt

∂

∂ẋ

(
∂F

∂x
ẋ+

∂F

∂y
ẏ +

∂F

∂t

)
=

d

dt

∂F

∂x



Plugging this dF/dt into the LHS:

∂(L′ − L)

∂x
=

∂

∂x

dF (x, y, t)

dt
=

∂

∂x

∂F

∂x
ẋ+

∂

∂x

∂F

∂y
ẏ +

∂

∂x

∂F

∂t

Then plugging same dF/dt into the RHS:

d

dt

∂(L′ − L)

∂ẋ
=

d

dt

∂

∂ẋ

(
∂F

∂x
ẋ+

∂F

∂y
ẏ +

∂F

∂t

)
=

d

dt

∂F

∂x

then expanding the RHS using the chain rule

d

dt

∂F

∂x
=

∂

∂x

∂F

∂x
ẋ +

∂

∂y

∂F

∂x
ẏ +

∂

∂t

∂F

∂x

and swapping the order of the partial derivatives

d

dt

∂F

∂x
=

∂

∂x

∂F

∂x
ẋ +

∂

∂x

∂F

∂y
ẏ +

∂

∂x

∂F

∂t

which is identical to the LHS above. So ∂(L′−L)
∂x = d

dt
∂(L′−L)

∂ẋ



Therefore, the Lagrangian

L′ = L+
d

dt
F (~rα, t)

has the same EOM as the original Lagrangian L.

We’ve added to L the total time derivative of a function F (~rα, t),
where F can be a function of ~rα and of t, but F cannot be a
function of the velocities ~̇rα.

This turns out to be the most general addition that you can
make to L without affecting the equations of motion.

Another way to see this is to look at the action
∫
Ldt∫ tf

ti

(L′ − L) dt =

∫ tf

ti

(
dF (~r, t)

dt

)
dt = [F (~r, t)]

tf
ti

since the coordinates ~r are fixed at the endpoints, we’ve simply
added a constant to the action, which does not change what path
extremizes the action. Argument wouldn’t work for F (ṙ).



Examples that don’t change EOM: L → L+ d
dtF (x, t)

L → L+At F (x, t) = At2/2

L → L+Af(t) F (x, t) = A

∫ t

t′=0
f(t′)dt′

L → L+Aẋ F (x, t) = Ax

L → L+Axẋ F (x, t) = Ax2/2

L → L+Axnẋ F (x, t) = Axn+1/(n+ 1)

Examples that do change EOM:

L → L+Axn (n 6= 0)

L → L+Aẋ2

When considering “symmetries of L” you really mean that EOM is
unchanged. If an operation changes L in a way that doesn’t affect
EOM, then the operation is still considered a symmetry of L.



Monday’s reading questions:

(1) Name several conserved quantities and the corresponding
ignorable coordinates for the Kepler problem.

Once L is rewritten in terms of CM coordinate R and relative
coordinate r,

L =
1

2
MṘ2 +

1

2
µṙ2 − U(r)

we find ∂L/∂R = 0, so R is ignorable, and the corresponding
conserved quantity is ∂L/∂Ṙ ≡ P , the system’s total linear
momentum.

Then once L is further reduced (because r × ṙ is constant, due to
L conservation) to the planar form

L =
1

2
µ(ṙ2 + r2φ̇2)− U(r)

we find another ignorable coordinate, φ, corresponding to
conservation of angular momentum Lz ≡ `: ` = µr2φ̇ = const.
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Several people also pointed out that since time does not appear
explicitly in L, the total energy is conserved.

It’s also an interesting fact (not mentioned by Taylor) that for an
inverse-square central force (like Newtonian gravity), the
“Laplace-Runge-Lenz vector” (a.k.a. “LRL vector”) is a constant
of the motion: A = p×L−Gm1m2µr̂, which basically points
along the major axis of the ellipse.

en.wikipedia.org/wiki/Laplace-Runge-Lenz_vector

Interestingly, this conserved quantity does not have a
corresponding ignorable coordinate, so it’s less well known than P
and L. In the Hamiltonian formalism, one can show that A is
conserved (for a 1/r potential) by showing that [A, H] = 0, where
[] denotes the “Poisson bracket,” which is the classical analogue of
the “commutator” that you will see in quantum mechanics.

(This is pure digression!)

en.wikipedia.org/wiki/Laplace-Runge-Lenz_vector


Consider two masses m1 and m2 connected by a spring:

L(x1, x2, ẋ1, ẋ2) =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 −

1

2
k(x1 − x2)2

No “ignorable” coordinates: ∂L
∂x1

= −k(x1 − x2) 6= 0, etc.

But with a clever choice of generalized coordinates, e.g. let

x ≡ x1 − x2 M ≡ m1 +m2 X ≡ m1x1 +m2x2

M

we can rewrite the same L as

L(x, ẋ, Ẋ) =
1

2
MẊ2 +

1

2

(m1m2

M

)
ẋ2 − 1

2
kx2

where now X is “ignorable” ( ∂L∂X = 0) and the corresponding
momemtum is a constant of the motion:

P ≡ ∂L
∂Ẋ

= MẊ = m1ẋ1 +m2ẋ2 = const.

So one typically tries to choose generalized coordinates such that
as many coordinates as possible are “ignorable,” hence the
corresponding momenta are conserved. Ch8 nicely illustrates this!



Verify that the positions of two particles can be written in terms of
the CM and relative positions as

r1 = R +m2r/M r2 = R−m1r/M

where M = m1 +m2. Hence confirm that the total KE of the two
particles can be expressed as

T =
1

2
MṘ2 +

1

2
µṙ2

where µ denotes the reduced mass µ = m1m2/M .





(2) Why is Ueff(r) non-monotonic, unlike U(r) = −Gm1m2/r? Is
the time for r to oscillate back and forth between rmin and rmax

always equal to the time in which φ advances 360◦?

From ∂L/∂r = d
dt(∂L/∂ṙ), we got the radial EOM,

µr̈ = − dU

dr
+ µrφ̇2 = − d

dr

(
−Gm1m2

r
+

`2

2µr2

)
where “µω2r” centripetal term equals `2

µr3
since ` = µr2φ̇.

You can imagine r staying
constant at bottom of “Ueff ,”
oscillating back and forth
between Ueff(rmin) = Ueff(rmax),
or else just bouncing/scattering
once (bounded vs. unbounded).

Ueff = gravitational term +
“centrifugal potential,” which
appears e.g. in HW4.q5 (wire on
spinning horizontal hoop).



(future HW problem: generalization of HW4.q5)

You’ll find L = T (U = 0), yet you still get oscillations about a
stable equilibrium, due to ω-dependent centripetal terms that are
somewhat analogous (but of a different form) to the “centrifugal
potential” we find in the Kepler problem. You’ll find

rθ̈ = −ω2R sin θ



(2) Why is Ueff(r) non-monotonic, unlike U(r) = −Gm1m2/r?
Is the time for r to oscillate back and forth between rmin and rmax

always equal to the time in which φ advances 360◦?

For inverse-square-law forces (U ∼ −1/r) and for (isotropic)
Hooke’s-law forces (U ∼ r2), the period of the φ motion equals the
period of the r motion [actually Tφ = 2Tr for (U ∼ r2)], and the
orbit always closes on itself after one revolution. For more general
U(r), the orbit does not necessarily repeat itself (non-closed orbit).

(inverse-square force) (more general case)
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(Taylor 8.12. Let’s do this in class, today or next time.)

(a) By examining d/dr of the radial effective potential

Ueff(r) = − Gm1m2

r
+

`2

2µr2

find the radius r0 at which a planet with angular momentum ` can
orbit the sun in a circular orbit with fixed radius.

(b) Use d2Ueff/dr
2 to show that this circular orbit is stable, i.e.

that a small radial nudge will cause only small radial oscillations.

(c) Show that the frequency Ω of these radial oscillations equals
the frequency ω = φ̇ of the planet’s orbital motion.
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