
Physics 351 — Friday, February 16, 2018

I Turn in HW4. Pick up HW5 handout (due next Friday).

I Read Ch 9 (mechanics in non-inertial frames) this weekend,
though it will be mid-week before we start discussing it.

I (The midterm exam (March 26) will cover chapters 7,8,9.)

A particle slides on the inside surface of a frictionless
cone. The cone is fixed with its tip on the ground and
its axis vertical. The half-angle of the cone is α, as
shown in the left figure below. Let ρ be the distance
from the particle to the axis, and let φ be the angle
around the cone. (a) Find the EOM for ρ and for φ.
(One EOM will identify a conserved quantity, which
you can plug into the other EOM.) (b) If the particle
moves in a circle of radius ρ = r0, what is the
frequency ω of this motion? (c) If the particle is then
perturbed slightly from this circular motion, what is
the frequency Ω of the oscillations about the radius
ρ = r0? (d) Under what conditions does Ω = ω?





Last weekend’s reading questions:

(1) Name several conserved quantities and the corresponding
ignorable coordinates for the Kepler problem.

Once L is rewritten in terms of CM coordinate R and relative
coordinate r,

L =
1

2
MṘ2 +

1

2
µṙ2 − U(r)

we find ∂L/∂R = 0, so R is ignorable, and the corresponding
conserved quantity is ∂L/∂Ṙ ≡ P , the system’s total linear
momentum.

Then once L is further reduced (because r × ṙ is constant, due to
L conservation) to the planar form

L =
1

2
µ(ṙ2 + r2φ̇2)− U(r)

we find another ignorable coordinate, φ, corresponding to
conservation of angular momentum Lz ≡ `: ` = µr2φ̇ = const.
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Several people also pointed out that since time does not appear
explicitly in L, the total energy is conserved.

It’s also an interesting fact (not mentioned by Taylor) that for an
inverse-square central force (like Newtonian gravity), the
“Laplace-Runge-Lenz vector” (a.k.a. “LRL vector”) is a constant
of the motion: A = p×L−Gm1m2µr̂, which basically points
along the major axis of the ellipse.

en.wikipedia.org/wiki/Laplace-Runge-Lenz_vector

Interestingly, this conserved quantity does not have a
corresponding ignorable coordinate, so it’s less well known than P
and L. In the Hamiltonian formalism, one can show that A is
conserved (for a 1/r potential) by showing that [A, H] = 0, where
[] denotes the “Poisson bracket,” which is the classical analogue of
the “commutator” that you will see in quantum mechanics.

(This is pure digression!)

en.wikipedia.org/wiki/Laplace-Runge-Lenz_vector


Consider two masses m1 and m2 connected by a spring:

L(x1, x2, ẋ1, ẋ2) =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 −

1

2
k(x1 − x2)2

No “ignorable” coordinates: ∂L
∂x1

= −k(x1 − x2) 6= 0, etc.

But with a clever choice of generalized coordinates, e.g. let

x ≡ x1 − x2 M ≡ m1 +m2 X ≡ m1x1 +m2x2

M

we can rewrite the same L as

L(x, ẋ, Ẋ) =
1

2
MẊ2 +

1

2

(m1m2

M

)
ẋ2 − 1

2
kx2

where now X is “ignorable” ( ∂L∂X = 0) and the corresponding
momemtum is a constant of the motion:

P ≡ ∂L
∂Ẋ

= MẊ = m1ẋ1 +m2ẋ2 = const.

So one typically tries to choose generalized coordinates such that
as many coordinates as possible are “ignorable,” hence the
corresponding momenta are conserved. Ch8 nicely illustrates this!



Verify that the positions of two particles can be written in terms of
the CM and relative positions as

r1 = R +m2r/M r2 = R−m1r/M

where M = m1 +m2. Hence confirm that the total KE of the two
particles can be expressed as

T =
1

2
MṘ2 +

1

2
µṙ2

where µ denotes the reduced mass µ = m1m2/M .





(2) Why is Ueff(r) non-monotonic, unlike U(r) = −Gm1m2/r? Is
the time for r to oscillate back and forth between rmin and rmax

always equal to the time in which φ advances 360◦?

From ∂L/∂r = d
dt(∂L/∂ṙ), we got the radial EOM,

µr̈ = − dU

dr
+ µrφ̇2 = − d

dr

(
−Gm1m2

r
+

`2

2µr2

)
where “µω2r” centripetal term equals `2

µr3
since ` = µr2φ̇.

You can imagine r staying
constant at bottom of “Ueff ,”
oscillating back and forth
between Ueff(rmin) = Ueff(rmax),
or else just bouncing/scattering
once (bounded vs. unbounded).

Ueff = gravitational term +
“centrifugal potential,” which
appears e.g. in HW4.q5 (wire on
spinning horizontal hoop).



(future HW problem: generalization of HW4.q5)

You’ll find L = T (U = 0), yet you still get oscillations about a
stable equilibrium, due to ω-dependent centripetal terms that are
somewhat analogous (but of a different form) to the “centrifugal
potential” we find in the Kepler problem. You’ll find

rθ̈ = −ω2R sin θ



(2) Why is Ueff(r) non-monotonic, unlike U(r) = −Gm1m2/r?
Is the time for r to oscillate back and forth between rmin and rmax

always equal to the time in which φ advances 360◦?

For inverse-square-law forces (U ∼ −1/r) and for (isotropic)
Hooke’s-law forces (U ∼ r2), the period of the φ motion equals the
period of the r motion [actually Tφ = 2Tr for (U ∼ r2)], and the
orbit always closes on itself after one revolution. For more general
U(r), the orbit does not necessarily repeat itself (non-closed orbit).

(inverse-square force) (more general case)
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(Taylor 8.12. Let’s do this in class, today or next time.)

(a) By examining d/dr of the radial effective potential

Ueff(r) = − Gm1m2

r
+

`2

2µr2

find the radius r0 at which a planet with angular momentum ` can
orbit the sun in a circular orbit with fixed radius.

(b) Use d2Ueff/dr
2 to show that this circular orbit is stable, i.e.

that a small radial nudge will cause only small radial oscillations.

(c) Show that the frequency Ω of these radial oscillations equals
the frequency ω = φ̇ of the planet’s orbital motion.
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