
Physics 351 — Monday, February 19, 2018

I You read Ch 9 (mechanics in non-inertial frames) last
weekend, though it will be mid-week before we start
discussing it.

I (The midterm exam (March 26) will cover chapters 7,8,9.)

(a) By examining d/dr of the radial effective potential

Ueff(r) = − Gm1m2

r
+

`2

2µr2

find the radius r0 at which a planet with angular momentum ` can orbit
the sun in a circular orbit with fixed radius.

(b) Use d2Ueff/dr
2 to show that this circular orbit is stable, i.e. that a

small radial nudge will cause only small radial oscillations.

(c) Show that the frequency Ω of these radial oscillations equals the
frequency ω = φ̇ of the planet’s orbital motion.



This was the last thing we did on Friday
Consider two masses m1 and m2 connected by a spring:

L(x1, x2, ẋ1, ẋ2) =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 −

1

2
k(x1 − x2)2

No “ignorable” coordinates: ∂L
∂x1

= −k(x1 − x2) 6= 0, etc.

But with a clever choice of generalized coordinates, e.g. let

x ≡ x1 − x2 M ≡ m1 +m2 X ≡ m1x1 +m2x2

M

we can rewrite the same L as

L(x, ẋ, Ẋ) =
1

2
MẊ2 +

1

2

(m1m2

M

)
ẋ2 − 1

2
kx2

where now X is “ignorable” ( ∂L∂X = 0) and the corresponding
momemtum is a constant of the motion:

P ≡ ∂L
∂Ẋ

= MẊ = m1ẋ1 +m2ẋ2 = const.

So one typically tries to choose generalized coordinates such that
as many coordinates as possible are “ignorable.”



(You’ll do this on HW5, so let’s not do it in class.)

Verify that the positions of two particles can be written in terms of
the CM and relative positions as

r1 = R +m2r/M r2 = R−m1r/M

where M = m1 +m2. Hence confirm that the total KE of the two
particles can be expressed as

T =
1

2
MṘ2 +

1

2
µṙ2

where µ denotes the reduced mass µ = m1m2/M .





In the Kepler problem, we started out with

L =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 − U(|r1 − r2|)

Then using CM coordinate R (and r = r1 − r2) let us write

L =
1

2
MṘ2 +

1

2
µṙ2 − U(r)

making R ignorable. Working in (inertial) CM frame let us write

Lrel =
1

2
µṙ2 − U(r)

Angular-momentum conservation keeps motion in fixed plane, so
we can work in 2D polar coordinates:

L =
1

2
µ(ṙ2 + r2φ̇2)− U(r)

making φ ignorable: the φ EOM is just

µr2φ̇ ≡ `



L =
1

2
µṙ2 +

1

2
µr2φ̇2 − U(r) µr2φ̇ ≡ `

Radial EOM is (you cannot plug in φ̇ = `/(µr2) before this):

µr̈ = −dU

dr
+ µrφ̇2 = −dU

dr
+

`2

µr3
= − d

dr

(
U(r) +

`2

2µr2

)
where the “effective potential” is U + “centrifugal potential”

Ueff(r) = U(r) +
`2

2µr2

Now energy conservation lets us
write

E ≡ 1

2
µṙ2 + Ueff(r)

E =
1

2
µṙ2 +

`2

2µr2
+ U(r)

So r just oscillates back and forth at
constant E.



(2) Why is Ueff(r) non-monotonic, unlike U(r) = −Gm1m2/r? Is
the time for r to oscillate back and forth between rmin and rmax

always equal to the time in which φ advances 360◦?

From ∂L/∂r = d
dt(∂L/∂ṙ), we got the radial EOM,

µr̈ = − dU

dr
+ µrφ̇2 = − d

dr

(
−Gm1m2

r
+

`2

2µr2

)
where “µω2r” centripetal term equals `2

µr3
since ` = µr2φ̇.

You can imagine r staying
constant at bottom of “Ueff ,”
oscillating back and forth
between Ueff(rmin) = Ueff(rmax),
or else just bouncing/scattering
once (bounded vs. unbounded).

Ueff = gravitational term +
“centrifugal potential,” which
appeared e.g. in HW4.q5 (wire
on spinning horizontal hoop).



(HW5 problem: generalization of HW4.q5)

You’ll find L = T (U = 0), yet you still get oscillations about a
stable equilibrium, due to ω-dependent centripetal terms that are
somewhat analogous (but of a different form) to the “centrifugal
potential” we find in the Kepler problem. You’ll find

rθ̈ = −ω2R sin θ



(2) Why is Ueff(r) non-monotonic, unlike U(r) = −Gm1m2/r?
Is the time for r to oscillate back and forth between rmin and rmax

always equal to the time in which φ advances 360◦?

For inverse-square-law forces (U ∼ −1/r) and for (isotropic)
Hooke’s-law forces (U ∼ r2), the period of the φ motion equals the
period of the r motion [actually Tφ = 2Tr for (U ∼ r2)], and the
orbit always closes on itself after one revolution. For more general
U(r), the orbit does not necessarily repeat itself (non-closed orbit).

(inverse-square force) (more general case)



(2) Why is Ueff(r) non-monotonic, unlike U(r) = −Gm1m2/r?
Is the time for r to oscillate back and forth between rmin and rmax

always equal to the time in which φ advances 360◦?

For inverse-square-law forces (U ∼ −1/r) and for (isotropic)
Hooke’s-law forces (U ∼ r2), the period of the φ motion equals the
period of the r motion [actually Tφ = 2Tr for (U ∼ r2)], and the
orbit always closes on itself after one revolution. For more general
U(r), the orbit does not necessarily repeat itself (non-closed orbit).

(inverse-square force) (more general case)



(Taylor 8.12. Let’s do this in class. You started it before class.)

(a) By examining d/dr of the radial effective potential

Ueff(r) = − Gm1m2

r
+

`2

2µr2

find the radius r0 at which a planet with angular momentum ` can
orbit the sun in a circular orbit with fixed radius.

(b) Use d2Ueff/dr
2 to show that this circular orbit is stable, i.e.

that a small radial nudge will cause only small radial oscillations.

(c) Show that the frequency Ω of these radial oscillations equals
the frequency ω = φ̇ of the planet’s orbital motion.







Radial equation of motion:

µr̈ = −dU

dr
+

`2

µr3
= F (r) +

`2

µr3

The ingenious trick to solving the radial EOM is to substitute
u = 1/r.

u′′(φ) = −u(φ)− µ

`2 u(φ)2
F

(which you’ll use once or twice in HW6 next week).

If you plug in F = 0 (no force), you get u′′(φ) = −u(φ) whose
solution is that u is a cosine (so then 1/r is a cosine):

r(φ) =
1

u(φ)
=

r0

cos(φ− δ)

which (believe it or not!) is an equation for a straight line:
r cos(φ+ α) = const.



Back to the “transformed radial equation”

u′′(φ) = −u(φ)− µ

`2 u(φ)2
F

If we specialize to (attractive) inverse-square forces (γ = Gm1m2):

F (r) = −Gm1m2

r2
= − γ

r2
= −γu2

then the u2 cancels, making the last term a constant

u′′(φ) = −u(φ)− γµ

`2

The solution to (u+ const)′′ = −(u+ const) is that
(u+ const) is a cosine (with phase shift we’ll take to be zero):

u(φ) =
γµ

`2
(1 + ε cosφ)

r(φ) =
1

u(φ)
=

`2/(γµ)

1 + ε cosφ
=
`2/(Gm1m2µ)

1 + ε cosφ
≡ c

1 + ε cosφ



So for the attractive inverse-square case F = Gm1m2/r
2 we find

r(φ) =
`2/(Gm1m2µ)

1 + ε cosφ
≡ c

1 + ε cosφ

where c has dimensions of length and the dimensionless parameter
ε is the eccentricity.

As you know from the reading, this equation can describe a circle,
an ellipse, a parabola, or a hyperbola.



r(φ) =
c

1 + ε cosφ

(Taylor 8.19) The height of a satellite at perigee is 300 km above
the earth’s surface, and it is 3000 km at apogee.

(a) Find the orbit’s eccentricity.

(b) If the orbit lies in the xy plane, with major axis in the x
direction, and with earth’s center at the origin, what is the
satellite’s height when it crosses the y axis?

Note: earth’s radius is Re = 6400 km.

(At what value of cosφ is r a minimum? A maximum?)
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