
Physics 351 — Wednesday, February 21, 2018

I HW5 due Friday. For HW help, Bill is in DRL 3N6 Wed
4–7pm. Grace is in DRL 2C2 Thu 5:30–8:30pm.

It is often convenient to treat the “inertial (pseudo)force”
Finertial = −mA as if it were just another component of gravity. For
instance, the natural period of oscillation of a pendulum suspended from
the ceiling of an elevator that is accelerating upward with constant
acceleration A is

(a) period = 2π
√
`/g

(b) period = 2π
√
`/(g +A)

(c) period = 2π
√
`/(g −A)

(d) period = 2π
√
`/
√
g2 +A2

(e) period = 2π
√
`/
√
g2 −A2

(f) none of the above



As you know from experience riding in cars, trains, airplanes, etc.,
if you observe the world from the perspective of a non-inertial
reference frame (i.e. a frame that is accelerating or rotating w.r.t.
the distant stars), you perceive “pseudo-forces” that modify the
usual results of Newton’s 2nd law.

The simplest case is that your frame of reference S is accelerating
(but not rotating) w.r.t. inertial frame S0.

Let the acceleration of your frame S w.r.t. S0 be A. Then from
your perspective, an object of mass m experiences an inertial force

Finertial = −mA

If your elevator accelerates upward, you feel an additional
downward force −mA, so your apparent weight is m(g +A).

If your elevator accelerates downward, you feel an additional
upward force −mA, so your apparent weight is m(g −A).



In GR, Einstein’s principle of equivalence assumes “the complete
physical equivalence of a gravitational field and a corresponding
acceleration of the reference system.”

It is often convenient to treat this “inertial force” Finertial = −mA
as if it were just another component of gravity. For instance, the
natural period of oscillation of a pendulum suspended from the
ceiling of an elevator that is accelerating upward with constant
acceleration A is

(a) period = 2π
√
`/g

(b) period = 2π
√
`/(g +A)

(c) period = 2π
√
`/(g −A)

(d) period = 2π

√
`/
√
g2 +A2

(e) period = 2π

√
`/
√
g2 −A2

(f) none of the above



It is often convenient to treat this “inertial force” Finertial = −mA
as if it were just another component of gravity.

The natural period of oscillation of a pendulum suspended from
the ceiling of an elevator that is accelerating downward with
constant acceleration A is

(a) period = 2π
√
`/g

(b) period = 2π
√
`/(g +A)

(c) period = 2π
√
`/(g −A)

(d) period = 2π

√
`/
√
g2 +A2

(e) period = 2π

√
`/
√
g2 −A2

(f) none of the above



It is often convenient to treat this “inertial force” Finertial = −mA
as if it were just another component of gravity.

The natural period of oscillation of a pendulum suspended from
the ceiling of a train car that is accelerating to the right with
constant acceleration A is

(a) period = 2π
√
`/g

(b) period = 2π
√
`/(g +A)

(c) period = 2π
√
`/(g −A)

(d) period = 2π

√
`/
√
g2 +A2

(e) period = 2π

√
`/
√
g2 −A2

(f) none of the above



It is often convenient to treat this “inertial force” Finertial = −mA
as if it were just another component of gravity.

The natural period of oscillation of a pendulum suspended from
the ceiling of a train car that is accelerating to the left with
constant acceleration A is

(a) period = 2π
√
`/g

(b) period = 2π
√
`/(g +A)

(c) period = 2π
√
`/(g −A)

(d) period = 2π

√
`/
√
g2 +A2

(e) period = 2π

√
`/
√
g2 −A2

(f) none of the above



(That last one was intended to make you laugh.)

If the indicated angle θ0 is in fact the equilibrium position of the
pendulum in the figure, in which direction is the train car (from
whose ceiling it is suspended) accelerating?

(a) ~A points to the right

(b) ~A points to the left



(HW problem from 2014.) A helium balloon is anchored by a
massless string to the floor of a car that is accelerating to the
right with (horizontal) acceleration A. At equilibrium, in which
direction does the balloon string tilt (w.r.t. vertical)?

(a) vertical. (b) balloon tilts right. (c) balloon tilts left.

A is horizontal and has magnitude A. What is tan(θ)?

Balloon-in-car video:
https://www.youtube.com/watch?v=y8mzDvpKzfY

https://www.youtube.com/watch?v=y8mzDvpKzfY
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While we normally use the more sophisticated d
dt →

d
dt + Ω×

method for rotating frames, you can use the simpler −mA method
for instantaneous centripetal acceleration. For instance . . .

Another homework problem from 2014: A donut-shaped space
station (outer radius R) arranges for artificial gravity by spinning
on the axis of the donut with angular velocity ω. Sketch the forces
on, and accelerations of, an astronaut standing in the station (a)
as seen from an inertial frame outside the station, and (b) as seen
in the astronaut’s personal rest frame.

(c) How would you calculate the
required ω to simulate Earth’s
gravity?

(d) If R = 100 m, by about what
fraction does “g” differ between
the astronaut’s head and feet?
(In astronaut’s CM frame, this
difference = centrifugal force.)



A rotation about some origin O requires us to specify a plane of
rotation and an angle. In two spatial dimensions, there is only one
plane, so we need only one number to specify a rotation.

In four spatial dimensions, there would be

4!

2! 2!
= 6

possible planes of rotation, which is more than you can specify
with a single 4-dimensional vector.

So it’s a peculiarity of our 3-dimensional world that we can use
(3D) vectors to specify (3D) rotations. But in 3D, it is extremely
convenient to write

ω = ω û

where û points in the direction of the rotation axis, using the
right-hand rule to pick the sign.

Remarkably, angular velocities (about a given origin) add in the
same way as translational velocities. Works because infinitesimal
rotations commute, while finite rotations do not commute.



You can see by staring at a globe that a point r measured w.r.t.
the center of the spinning globe has instantaneous velocity

v = ω × r

whose magnitude is ωr sin θ = ωρ.

What’s a bit more remarkable is that this works for a unit vector e
fixed on the spinning globe:

de

dt
= ω × e

This gives you a much quicker way to derive Chapter 1’s results for
rotating unit vectors in cylindrical coordinates (take ω = φ̇ẑ)

dr̂

dt
= ω × r̂ = +ωφ̂

dφ̂

dt
= ω × φ̂ = −ωr̂



Imagine a globe spinning with angular velocity Ω.

If you observe the same vector Q from two different frames:

I A “space” frame S0 that is stationary in space.

I A “body” frame S that is attached to the spinning globe.

You can relate dQ/dt as observed in the two frames using this
incredibly useful identity:(

dQ

dt

)
S0

=

(
dQ

dt

)
S

+ Ω×Q

In Chapter 10 (in a week or so), we’ll rephrase this as:(
dQ

dt

)
space

=

(
dQ

dt

)
body

+ Ω×Q



(
dQ

dt

)
S0

=

(
dQ

dt

)
S

+ Ω×Q

Applying this (twice) to Newton’s second law (inertial frame S0):

m

(
d2r

dt2

)
S0

= F

gives Newton’s 2nd law as seen in rotating frame S

mr̈ = F + 2mṙ ×Ω + m(Ω× r)×Ω

and two well-known pseudo-forces appear. (This assumes Ω̇ = 0.)

The pseudo-force due to the second (red) term is called . . .

The pseudo-force due to the third (violet) term is called . . .

(If Ω̇ 6= 0, then you get one more term, called the “azimuthal
force.” See HW06/q9.)



The centrifugal force (which our high-school physics teachers
regarded as an abomination) is

Fcentrifugal = m(Ω× r)×Ω

(Use right-hand rule to see the various vectors on globe.)

Its magnitude is . . . ?

This is easier to see using ρ = r sin θ:

Fcentrifugal = mΩ2 ρ ρ̂ = mΩ2r sin θ ρ̂



The centrifugal force (which our high-school physics teachers
regarded as an abomination) is
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This is easier to see using ρ = r sin θ:
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Fcentrifugal = m(Ω× r)×Ω = mΩ2 ρ ρ̂

Another HW question from 2014: I am spinning a bucket of water
about its vertical axis with angular velocity Ω. Once the water has
settled in equilibrium (relative to the bucket), what will be the
shape of the water surface? (Let ρ be the (horizontal) distance
from the axis of rotation.)

(A) y ∼ 1/ρ2

(B) y ∼ 1/ρ

(C) y ∼ ρ
(D) y ∼ ρ2

(E) y ∼ ρ3





Unlike the inertial force and the centrifugal force, which you
experience when traveling in cars, airplanes, etc., the Coriolis
force is much less familiar from everyday experience:

Fcoriolis = 2mv ×Ω

(Use right-hand rule to see the various vectors on globe.) One
handy mnemonic is the analogy with the magnetic force law.

One more HW problem from a past year: What are the directions
of the centrifugal and Coriolis forces on a person moving

(1) south near the North Pole?

(2) east on the equator?

(3) west on the equator?

(4) south across the equator?

(5) east near Philadelphia?

(6) west near Philadelphia?

(7) north near Philadelphia?



If you look down at Earth from space (e.g. from above the
equator), and you somehow manage to hover at rest w.r.t. Earth’s
CoM, as if you were watching a spinning globe, in which direction
do you see the land beneath you moving?

(A) toward the east (from west to east)

(B) toward the west (from east to west)

(C) It depends on whether you’re looking down at the northern or
the southern hemisphere.



In the same scenario as the last page (hovering as if watching a
spinning globe), if I look down at Earth, then blink my eyes for a
moment, then look down again at Earth, the land that I see after
blinking is

(A) east of the land that I saw before blinking (I see Philly, then a
while later I see England)

(B) west of the land that I saw before blinking (I see Philly, then a
while later I see San Francisco)



If I drop an object straight down from the top of a tall building,
the Coriolis force will deflect the falling object

(A) toward the east

(B) toward the west



Fcoriolis = 2mv ×Ω

The cross-product of (downward toward Earth’s center) with Ω
points

(A) toward the east

(B) toward the west





Fcoriolis = 2mv ×Ω

A projectile of mass m is fired with initial speed v0 horizontally
and due north from a position of colatitude θ. Find the direction
and magnitude of the Coriolis force in terms of m, v0, θ, and
Earth’s angular velocity Ω.

How does the Coriolis force compare with the projectile’s weight if
v0 = 1000 m/s and θ = 60◦? (Ω ≈ 7.3× 10−5/s, g ≈ 10 m/s2)

(1000 m/s is around Mach 3, i.e. 3× the speed of sound. In more
familiar units, it’s 3600 kph, or 2240 mph. Wikipedia says this is
the right order of magnitude for modern artillery cannons. I
imagine (just guessing) that the cannon that severely wounded
Prince Andrei in War and Peace was sub-sonic.)





For spinning Earth, Ω points up out of the north pole. This
rotation gives position ~r on Earth’s surface the velocity

v = Ω× r

That is, as seen from space,

dr

dt
= Ω× r

This also works for a unit vector e fixed on the spinning globe:

de

dt
= Ω× e

At any given instant, you can project a given vector Q onto two
different sets of axes: the “space” axes x̂, ŷ, ẑ that are not
rotating (they’re fixed in space somewhere), and the “body” axes
ê1, ê2, ê3 that are rotating with the globe (a.k.a. the rigid body).



If you observe the same vector Q from two different frames:

I A “space” frame S0 that is stationary in space.

I A “body” frame S that is attached to the spinning globe.

Q = Qxx̂+Qyŷ +Qzẑ = Q1ê1 +Q2ê2 +Q3ê3

Then we use the product rule for the RHS to account for

dê1
dt

= Ω× ê1

which gives this incredibly useful identity:(
dQ

dt

)
S0(space)

=

(
dQ

dt

)
S(body)

+ Ω×Q

You’ll use this often to relate dQ/dt as observed in the two frames.



(
dQ

dt

)
S0

=

(
dQ

dt

)
S

+ Ω×Q

Applying this (twice) to Newton’s second law (inertial frame S0):

m

(
d2r

dt2

)
S0

= F

gives Newton’s 2nd law as seen in rotating frame S

mr̈ = F + 2mṙ ×Ω + m(Ω× r)×Ω

and two well-known pseudo-forces appear. (This assumes Ω̇ = 0.)

2nd term is “Coriolis force.” 3rd term is “centrifugal force.”

(If Ω̇ 6= 0, then you get one more term, mr × Ω̇, called the
“azimuthal force” or “Euler force.” See HW06/q9.)

Pause for two points: how to evaluate each quantity in the boxed
equation; and which directions all the various vectors point.



The centrifugal force (which our high-school physics teachers
regarded with abomination) is

Fcentrifugal = m(Ω× r)×Ω

(Use right-hand rule to see the various vectors on globe.)

Its magnitude is . . . ?

This is easier to see using ρ = r sin θ:

Fcentrifugal = mΩ2 ρ ρ̂ = mΩ2r sin θ ρ̂



The centrifugal force (which our high-school physics teachers
regarded with abomination) is

Fcentrifugal = m(Ω× r)×Ω

(Use right-hand rule to see the various vectors on globe.)

Its magnitude is . . . ?

This is easier to see using ρ = r sin θ:

Fcentrifugal = mΩ2 ρ ρ̂ = mΩ2r sin θ ρ̂



What is smallest value of static friction coefficient µ for which the
block can stand still on the ramp? (What’s the familiar answer if
A = 0?)







Note that

tan(θ − β) =
cosβ sin θ − sinβ cos θ

cosβ cos θ + sinβ sin θ



Note that

tan(θ − β) =
cosβ sin θ − sinβ cos θ

cosβ cos θ + sinβ sin θ







Physics 351 — Wednesday, February 21, 2018

I You read Ch 9 (mechanics in non-inertial frames) last
weekend. The midterm exam (March 26) will cover (only!)
chapters 7,8,9. But we will be working on Ch 10 by then.

I HW5 due Friday. For HW help, Bill is in DRL 3N6 Wed
4–7pm. Grace is in DRL 2C2 Thu 5:30–8:30pm.


