
Physics 351 — Friday, February 23, 2018

I You’ll read the first half (§10.1–10.7) of Chapter 10 this
weekend. We’ll start talking about Ch10 mid/late next week.

I The midterm exam (March 26) will cover (only!) chapters
7,8,9. But we will be working on Ch 10 by then.

I Turn in HW5. Pick up handout for HW6, due next Friday.

Argue why y ∝ r2 in Wednesday’s spinning-liquid demo.



https://www.youtube.com/watch?v=4ffI0l8vUK8&t=12

This sort of resembles the scenario from problem 3.

https://www.youtube.com/watch?v=4ffI0l8vUK8&t=12


For spinning Earth, Ω points up out of the north pole. This
rotation gives position ~r on Earth’s surface the velocity

v = Ω× r

That is, as seen from space,

dr

dt
= Ω× r

This also works for a unit vector e fixed on the spinning globe:

de

dt
= Ω× e

At any given instant, you can project a given vector Q onto two
different sets of axes: the “space” axes x̂, ŷ, ẑ that are not
rotating (they’re fixed in space somewhere), and the “body” axes
ê1, ê2, ê3 that are rotating with the globe (a.k.a. the rigid body).



If you observe the same vector Q from two different frames:

I A “space” frame S0 that is stationary in space.

I A “body” frame S that is attached to the spinning globe.

Q = Qxx̂+Qyŷ +Qzẑ = Q1ê1 +Q2ê2 +Q3ê3

Then we use the product rule for the RHS to account for

dê1
dt

= Ω× ê1

which gives this incredibly useful identity:(
dQ

dt

)
S0(space)

=

(
dQ

dt

)
S(body)

+ Ω×Q

You’ll use this often to relate dQ/dt as observed in the two frames.



(
dQ

dt

)
S0

=

(
dQ

dt

)
S

+ Ω×Q

Applying this (twice) to Newton’s second law (inertial frame S0):

m

(
d2r

dt2

)
S0

= F

gives Newton’s 2nd law as seen in rotating frame S

mr̈ = F + 2mṙ ×Ω + m(Ω× r)×Ω

and two well-known pseudo-forces appear. (This assumes Ω̇ = 0.)

2nd term is “Coriolis force.” 3rd term is “centrifugal force.”

(If Ω̇ 6= 0, then you get one more term, mr × Ω̇, called the
“azimuthal force” or “Euler force.” See HW06/q9.)

Pause for two points: how to evaluate each quantity in the boxed
equation; and which directions all the various vectors point.



The centrifugal force (which our high-school physics teachers
regarded with abomination) is

Fcentrifugal = m(Ω× r)×Ω

(Use right-hand rule to see the various vectors on globe.)

Its magnitude is . . . ?

This is easier to see using ρ = r sin θ:

Fcentrifugal = mΩ2 ρ ρ̂ = mΩ2r sin θ ρ̂
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Unlike the inertial force and the centrifugal force, which you
experience when traveling in cars, airplanes, etc., the Coriolis
force is much less familiar from everyday experience:

Fcoriolis = 2mv ×Ω

(Use right-hand rule to see the various vectors on globe.) One
handy mnemonic is the analogy with the magnetic force law.

One more HW problem from a past year: What are the directions
of the centrifugal and Coriolis forces on a person moving

(1) south near the North Pole?

(2) east on the equator?

(3) west on the equator?

(4) south across the equator?

(5) east near Philadelphia?

(6) west near Philadelphia?

(7) north near Philadelphia?



If you look down at Earth from space (e.g. from above the
equator), and you somehow manage to hover at rest w.r.t. Earth’s
CoM, as if you were watching a spinning globe, in which direction
do you see the land beneath you moving?

(A) toward the east (from west to east)

(B) toward the west (from east to west)

(C) It depends on whether you’re looking down at the northern or
the southern hemisphere.



In the same scenario as the last page (hovering as if watching a
spinning globe), if I look down at Earth, then blink my eyes for a
moment, then look down again at Earth, the land that I see after
blinking is

(A) east of the land that I saw before blinking (I see Philly, then a
while later I see England)

(B) west of the land that I saw before blinking (I see Philly, then a
while later I see San Francisco)



If I drop an object straight down from the top of a tall building,
the Coriolis force will deflect the falling object

(A) toward the east

(B) toward the west



Fcoriolis = 2mv ×Ω

The cross-product of (downward toward Earth’s center) with Ω
points

(A) toward the east

(B) toward the west

Let’s work out together the Coriolis deflection of an object dropped
(from rest) from a height h above Earth’s surface. For simplicity,
let the starting point be directly above the equator.

(We stopped here on Friday.)







Here is the same
problem worked out
from the inertial
frame, instead of
the Earth frame. I
don’t think it’s
worth going
through in class,
but here it is. Note
that the sketch is
looking down from
the north pole.



Fcoriolis = 2mv ×Ω

A projectile of mass m is fired with initial speed v0 horizontally
and due north from a position of colatitude θ. Find the direction
and magnitude of the Coriolis force in terms of m, v0, θ, and
Earth’s angular velocity Ω.

How does the Coriolis force compare with the projectile’s weight if
v0 = 1000 m/s and θ = 60◦? (Ω ≈ 7.3× 10−5/s, g ≈ 10 m/s2)

(1000 m/s is around Mach 3, i.e. 3× the speed of sound. In more
familiar units, it’s 3600 kph, or 2240 mph. Wikipedia says this is
the right order of magnitude for modern artillery cannons. I
imagine (just guessing) that the Napoleonic-era cannon that
severely wounded Prince Andrei in War and Peace was sub-sonic.)





From spring 2015 midterm: At a polar angle θ (colatitude), a
projectile is fired due north with initial velocity v0 at an inclination
angle α above the ground. Working to first order in Earth’s
rotational velocity Ω, show that the eastward deflection due to the
Coriolis force is (vs. time t since the projectile was fired)

x(t) = Ωv0(cosα cos θ − sinα sin θ)t2 +
1

3
Ωgt3 sin θ

[Assume that air resistance is negligible and that g is a constant
throughout the flight. I recommend first neglecting the Coriolis
force and writing the “zeroth order” y(t) (northward) and z(t)
(upward) for ordinary projectile motion; then use this zeroth-order
trajectory to calculate the first-order Coriolis deflection, after
evaluating Ω in terms of the local x̂, ŷ, ẑ axes.]





A puck slides with speed v on frictionless ice. The surface is
“level” in the sense that it is orthogonal to the effective
(gravitational + centrifugal) g at all points. Show that the puck
moves in a circle, as seen in Earth’s rotating frame. (Assume that
v is small enough that the radius of the circle is much smaller than
the radius of Earth, so that the colatitude θ is essentially constant
throughout the motion.) What is the radius of the circle? What is
the frequency of the motion?







ma = F + 2mv ×Ω + m(Ω× r)×Ω

ma = F + 2mv ×Ω + mΩ2ρ ρ̂

Let’s go through two more examples to try to gain more insight
into the less intuitive Coriolis term.

First, a quick question: for an object in the northern hemisphere
moving due north, the Coriolis force points due . . . ?

ênorth = Ω̂ sin θ − ρ̂ cos θ

Ω̂× Ω̂ = 0 (−ρ̂)× Ω̂ = êeast

ênorth × Ω̂ = (cos θ) êeast = (cos θ) φ̂

Centrifugal force only cares about ρ and always points in the ρ̂
direction. Coriolis force looks at ρ̂ and φ̂ components of v and
points the plane perpendicular to Ω̂. So let’s work in the ⊥ plane,
e.g. on a carousel.
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If I am standing on the carousel and I want to move tangentially at
constant speed v w.r.t. the rotating frame of the carousel (so I’m
at constant radius ρ), how big must be the radial force of friction
between the carousel and my feet?

Evaluate this in the inertial frame, in terms of v, V , and ρ.



If I am standing on the carousel and I want to move tangentially at
constant speed v w.r.t. the rotating frame of the carousel (so I’m
at constant radius ρ), how big must be the radial force of friction
between the carousel and my feet? (“v0” is w.r.t. inertial frame.)

Now interpret each of the three terms above!



If I am standing on the carousel and I want to move tangentially at
constant speed v w.r.t. the rotating frame of the carousel (so I’m
at constant radius ρ), how big must be the radial force of friction
between the carousel and my feet? (“v0” is w.r.t. inertial frame.)

How would the result change if I were instead walking tangentially
at (relative) speed v opposite the carousel’s direction of rotation?



Now suppose I want to walk
radially inward in the frame of
the carousel, i.e. I want to walk
along a radial line painted on the
floor of the carousel.

Before I start to walk, when I’m
just standing “still” at the outer
radius of the carousel, what is
the magnitude of the frictional
force between the carousel floor
and my feet? How does the
balance of forces look in the
rotating frame?

From perspective of carousel’s rotating frame,

ma = Ffriction + Fcentrifugal = 0
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force between the carousel floor
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From perspective of carousel’s rotating frame,

ma = Ffriction + Fcentrifugal = 0



Now suppose I want to walk
radially inward in the frame of
the carousel, i.e. I want to walk
along a radial line painted on the
floor of the carousel.

Let my mass be m and let my
radial position be ρ. Before I
start to walk, what is my angular
momentum (which you should
evaluate in the inertial frame)?



Now suppose I want to walk
radially inward in the frame of
the carousel, i.e. I want to walk
along a radial line painted on the
floor of the carousel.

Let my mass be m and let my
radial position be ρ. As I walk
radially inward with constant
speed v (in carousel frame), what
is the rate of change of my
angular momentum (which you
should evaluate in the inertial
frame)?



Now suppose I want to walk
radially inward in the frame of
the carousel, i.e. I want to walk
along a radial line painted on the
floor of the carousel.

What force (acting on my feet!)
provides the torque that must
equal the rate of change of my
angular momentum as I walk
inward? In what direction does
that force point?



Now suppose I want to walk
radially inward in the frame of
the carousel, i.e. I want to walk
along a radial line painted on the
floor of the carousel.

In the rotating frame of the
carousel, my tangential
acceleration is zero. As I look
from the frame of the carousel,
what pseudoforce balances the
tangential frictional force such
that the net tangential
acceleration is zero?



positron.hep.upenn.edu/p351/files/0223_morin_coriolis.pdf

positron.hep.upenn.edu/p351/files/0223_morin_coriolis.pdf


I like the Coriolis force, because it’s the least-familiar topic from
Ch9. And I like the many places in Taylor’s book where he uses
“perturbation theory,” since this is such a widely useful technique
in physics.

So let’s finish the problem we started Monday, which combines
both ideas.

At a polar angle θ, a projectile is fired eastward with speed v0 at
an angle α above the ground. Let x̂ point east, let ŷ point north,
and let ẑ point “up.” To first order in Ω, work out the effects, ∆x
and ∆y, of the Coriolis force on the projectile’s landing point.
Ignore air resistance and ignore Earth’s curvature.

ma = F + 2mv ×Ω + mΩ2ρ ρ̂



(Continue from here.)









What is smallest value of static friction coefficient µ for which the
block can stand still on the ramp? (What’s the familiar answer if
A = 0?)







Note that

tan(θ − β) =
cosβ sin θ − sinβ cos θ

cosβ cos θ + sinβ sin θ



Note that

tan(θ − β) =
cosβ sin θ − sinβ cos θ

cosβ cos θ + sinβ sin θ
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