
Physics 351 — Wednesday, February 28, 2018

I HW6 due Friday. For HW help, Bill is in DRL 3N6 Wed
4–7pm. Grace is in DRL 2C2 Thu 5:30–8:30pm. To get the
most benefit from the homework, first work through every
problem on your own to the best of your ability. Then check
in with me, Grace, or a friend to compare final results and to
trade suggestions on problems that stumped you.

Let x̂ point east, ŷ point north, and ẑ point up, for a point on
Earth’s surface at colatitude θ. Decompose Earth’s rotation vector
Ω into its ŷ and ẑ components. Then write down the expresson for
Fcoriolis and write out, separately, the x, y, z components of
Fcoriolis in terms of vx, vy, vz, Ω, cos θ, and sin θ.

Once you’ve done that, we’ll return to Monday’s problem of the
Coriolis deflection (w.r.t. its order(Ω0) landing spot) of a projectile
fired eastward.



Here’s a slightly trickier Coriolis projectile problem. What makes
this problem tricky is that the Coriolis force also has a first-order
effect on the projectile’s flight time.

At a polar angle θ, a projectile is fired eastward with speed v0 at
an angle α above the ground. Let x̂ point east, let ŷ point north,
and let ẑ point “up.” To first order in Ω, work out the effects, ∆x
and ∆y, of the Coriolis force on the projectile’s landing point.
Ignore air resistance and ignore Earth’s curvature.

ma = F + 2mv × Ω + mΩ2ρ ρ̂











ma = F + 2mv × Ω + m(Ω × r) × Ω

ma = F + 2mv × Ω + mΩ2ρ ρ̂

Let’s go through two more examples to try to gain more insight
into the less intuitive Coriolis term.

First, a quick question: for an object in the northern hemisphere
moving due north, the Coriolis force points due . . . ?

ênorth = Ω̂ sin θ − ρ̂ cos θ

Ω̂ × Ω̂ = 0 (−ρ̂) × Ω̂ = êeast

ênorth × Ω̂ = (cos θ) êeast = (cos θ) φ̂

Centrifugal force only cares about ρ and always points in the ρ̂
direction. Coriolis force looks at ρ̂ and φ̂ components of v and it
lies in the plane perpendicular to Ω̂. So let’s work in the ⊥ plane,
e.g. on a carousel.
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If I am standing on the carousel and I want to move tangentially at
constant speed v w.r.t. the rotating frame of the carousel (so I’m
at constant radius ρ), how big must be the radial force of friction
between the carousel and my feet?

Evaluate this in the inertial frame, in terms of v, V , and ρ.



If I am standing on the carousel and I want to move tangentially at
constant speed v w.r.t. the rotating frame of the carousel (so I’m
at constant radius ρ), how big must be the radial force of friction
between the carousel and my feet? (“v0” is w.r.t. inertial frame.)

Now interpret each of the three terms above, from the perspective
of the rotating frame.



If I am standing on the carousel and I want to move tangentially at
constant speed v w.r.t. the rotating frame of the carousel (so I’m
at constant radius ρ), how big must be the radial force of friction
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How would the result change if I were instead walking tangentially
at (relative) speed v opposite the carousel’s direction of rotation?



Now suppose I want to walk
radially inward in the frame of
the carousel, i.e. I want to walk
along a radial line painted on the
floor of the carousel.

Before I start to walk, when I’m
just standing “still” at the outer
radius of the carousel, what is
the magnitude of the frictional
force between the carousel floor
and my feet? How does the
balance of forces look in the
rotating frame?

From perspective of carousel’s rotating frame,

ma = Ffriction + Fcentrifugal = 0
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Now suppose I want to walk
radially inward in the frame of
the carousel, i.e. I want to walk
along a radial line painted on the
floor of the carousel.

Let my mass be m and let my
radial position be ρ. Before I
start to walk, what is my angular
momentum (which you should
evaluate in the inertial frame)?



Now suppose I want to walk
radially inward in the frame of
the carousel, i.e. I want to walk
along a radial line painted on the
floor of the carousel.

Let my mass be m and let my
radial position be ρ. As I walk
radially inward with constant
speed v (in carousel frame), what
is the rate of change of my
angular momentum (which you
should evaluate in the inertial
frame)?



Now suppose I want to walk
radially inward in the frame of
the carousel, i.e. I want to walk
along a radial line painted on the
floor of the carousel.

What [real] force (acting on my
feet!) provides the torque that
must equal the rate of change of
my angular momentum as I walk
inward? In what direction does
that force point?



Now suppose I want to walk
radially inward in the frame of
the carousel, i.e. I want to walk
along a radial line painted on the
floor of the carousel.

In the rotating frame of the
carousel, my tangential
acceleration is zero. As I look
from the frame of the carousel,
what pseudoforce balances the
tangential frictional force such
that the net tangential
acceleration is zero?



http://positron.hep.upenn.edu/p351/files/0223_morin_coriolis.pdf

http://positron.hep.upenn.edu/p351/files/0223_morin_coriolis.pdf


Let’s try a Lagrangian version of the Foucault pendulum.











A puck slides with speed v on frictionless ice. The surface is
“level” in the sense that it is orthogonal to the effective
(gravitational + centrifugal) g at all points. Show that the puck
moves in a circle, as seen in Earth’s rotating frame. (Assume that
v is small enough that the radius of the circle is much smaller than
the radius of Earth, so that the colatitude θ is essentially constant
throughout the motion.) What is the radius of the circle? What is
the frequency of the motion?
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