
Physics 351 — Wednesday, March 14, 2018

I Chapter 10 is (I think) the most difficult chapter in the book,
so we will take our time to go through it slowly.

I HW7 due Friday. For HW help, Bill is in DRL 3N6 Wed
4–7pm. Grace is in DRL 2C2 Thu 5:30–8:30pm. To get the
most benefit from the homework, first work through every
problem on your own to the best of your ability. Then check
in with me, Grace, or a friend to compare final results and to
trade suggestions on problems that stumped you.

I On problem 1, you should first find r(φ) then work from the
transformed radial equation (Taylor 8.41), where u = 1/r

u′′(φ) = −u(φ)− µ

`2 u(φ)2
F



Consider a body, rotating about the origin O with fixed rotation
vector Ω. Constituent particle α has angular momentum

`α = rα × pα = rα ×mαvα = rα ×mα(Ω× rα)

(Pause to ponder the last step here: Ω× rα is drα/dt evaluated in
the “space” frame, given that r is at a fixed position in the
“body” frame. Also illustrate direction of `α for some cases, and
ponder whether `α is constant. Also notice that same (e.g.
circular) motion, evaluated for different origin, has different `α.)



Constituent particle α has angular momentum

`α = rα × pα = rα ×mαvα = rα ×mα(Ω× rα)

`α = mαrα × (Ω× rα)

So the rigid body as a whole has angular momentum

L =
∑
α

mαrα × (Ω× rα)

Consider each component Li (i = x, y, z) of L.

Li =
∑
α,k,m

mα rα,k (Ω× rα)m εkmi

Li =
∑
α,k,m

mα rα,k

∑
j,n

Ωj rα,n εjnm

 εkmi



Digression: “Einstein” notation for linear algebra

http://positron.hep.upenn.edu/p351/files/0119_cartesian_einstein.pdf

http://positron.hep.upenn.edu/p351/files/0119_cartesian_einstein.pdf




You can eliminate sum over repeated index k using this identity:
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Still working out component Li of L (i = x, y, z) . . .

Li =
∑
α,k,m

mα rα,k

∑
j,n

Ωj rα,n εjnm

 εkmi

Li =
∑

α,j,k,m,n

mα rα,k rα,n εjnm εikm Ωj

Li =
∑
j

 ∑
α,k,m,n

mα rα,k rα,n εjnm εikm

Ωj ≡
∑
j

Iij Ωj

is a linear (i.e. matrix multiplication) relationship between the two
vectors L and Ω. The moment-of-inertia tensor I has components

Iij =
∑

α,k,m,n

mα rα,k rα,n εjnm εikm =
∑

α,k,m,n

mα rα,k rα,n (δijδkn − δinδjk)

Iij =
∑
α

mα

[(∑
k

r2α,k δij

)
− rα,i rα,j

]
=
∑

m
[
r2δij − rirj

]



So vectors L and Ω are related by a matrix multiplication,

L = I Ω

where I is a real, symmetric matrix with components

Iij =
∑

m
[
r2δij − rirj

]
which implies that its eigenvalues are real and that I can be
diagonalized by an orthogonal matrix R, meaning that there exists
an orthogonal matrix (in fact a rotation matrix) R such that

R I RT

is diagonal. In other words, you can rotate into a basis in which I
is diagonal.

Anyway, let’s try writing down the components of I. (Write down
Ixx, Ixy, Ixz, etc.)



If you’re stranded on a delayed airplane flight (with no internet!)
and you desperately need to remember how to write down the
moment-of-inertia tensor (whose off-diagonal elements I have
trouble remembering), now you know that it’s not so bad:

I Remember L = I Ω L =
∑

` of constituents

I Start with ` = r × p = r ×mv

I Use v = Ω× r → ` = m r × (Ω× r)

I Work out the linear relationship between `i and Ωj , e.g.
explicitly writing out `z.

Let’s do that explicitly, using conventional vector notation.



The concise way to write I, which makes its symmetry obvious.

Iij =
∑

m
[
r2δij − rirj

]
And here’s a problem from next week’s HW8 to practice
calculating I for some simple cases:









The first calculation (part a) put origin at corner of cube. If we
rotate about x̂, will L and Ω be parallel?

What if we rotate about axis that goes from origin to far opposite
diagonal corner?



The first calculation (part a) put origin at corner of cube. Using
that origin, let’s rotate about axis from origin to far opposite
diagonal corner:

One way you could predict that this would be true is that this
corner-to-corner axis passes through the center of the cube, and we
know that since cube’s symmetry (about its center) gives us 3
degenerate eigenvalues, any axis passing through the cube’s center
should be a principal axis.



Once you know how to calculate I, you can write the angular
momentum

L = I ω

and the kinetic energy

T =
1

2
ω ·L =

1

2
ω · (Iω)

which generalize the freshman physics results

L = Iω T =
1

2
Iω2

If we rotate coordinate axes into basis in which I is diagonal, then

T =
1

2
(λ1Ω

2
1 + λ2Ω

2
2 + λ3Ω

2
3) L = (λ1Ω1, λ2Ω2, λ3Ω3)

where λ1, λ2, λ3 are the eigenvalues of I (i.e. are the 3 principal
moments of inertia). So life is simpler in the “principal axes” basis.



If we rotate coordinate axes into basis in which I is diagonal, then

T =
1

2
(λ1Ω

2
1 + λ2Ω

2
2 + λ3Ω

2
3) L = (λ1Ω1, λ2Ω2, λ3Ω3)

where λ1, λ2, λ3 are the eigenvalues of I (i.e. are the 3 principal
moments of inertia).

Math fact: Given a real symmetric 3× 3 matrix, I, there exist
three orthonormal real vectors ei such that

Iei = λiei

The unit vectors e1, e2, e3 (the eigenvectors of I) are called the
principal axes of the rigid body. In most cases of interest, you can
find the principal axes by symmetry, instead of having to solve the
eigenvalue/eigenvector problem.



With I =
∫

dm

 (y2 + z2) −xy −xz
−xy (x2 + z2) −yz
−xz −yz (x2 + y2)

, we get

L = I ω T =
1

2
ω · (Iω)

which generalize the familiar L = Iω and T = 1
2 Iω

2.

“Principal axes” basis simplifies these expressions considerably:

I =

 λ1 0 0
0 λ2 0
0 0 λ3


T =

1

2
(λ1ω

2
1 + λ2ω

2
2 + λ3ω

2
3) L = (λ1ω1, λ2ω2, λ3ω3)

So it’s quite helpful to identify and use principal axes.



Using symmetry, what are the three principal axes of these five
objects w.r.t. the origin of the coordinate axes shown? (Your
principal axes must pass through the chosen origin.) Note that the
left two are point masses in the xy plane.



(A) Any axes.

(B) Axis through
point; any axes
⊥ to this.

(C) x, y, z axes.

(D) z axis; any axes
in xy plane.

(E) z axis; axis
through CM;
axis ⊥ to this.





Let’s first work through a freshman-physics-like collision problem
that involves angular-momentum conservation. Then we’ll work
through a similar but trickier problem that requires us to project
the motion onto the principal axes.

Taylor 10.16
(a) First show that the moment of inertia of a uniform cube of side
a and mass M , rotating about an edge, is (2/3)Ma2.

The cube is sliding with velocity v across a flat horizontal
frictionless table when it hits a tiny step (⊥ v), and the leading
lower edge comes abruptly to rest.

(b) Find the cube’s angular velocity just after the collision.

(c) Find the minimum speed v for which the cube rolls over after
hitting the step. (Actually just write down an equation for the
minimum speed — the algebra is unenlightening.)







Morin Exerise 9.38.

Where is the CM? Let’s call the CM (initially) (0, 0, 0).
What is the post-impact motion of the CM?
What are the principal axes/moments?
Write two different expressions for L, to find ω.
Use ω to find velocities w.r.t. CM, then combine with vCM.



Morin Exerise 9.38.

Where is the CM? Let’s call the CM (initially) (0, 0, 0).
Halfway between B and D.

What is the post-impact motion of the CM?
Vcm = −P/(6m)ẑ (and stays that way)

What are the principal axes/moments (w.r.t. CM)?
λ1 = 6ma2 (ê1 = x̂), λ2 = 8ma2 (ê2 = ŷ), λ3 = 14ma2 (ê3 = ẑ)

Write two different expressions for L, to find ω.
Use ω to find velocities w.r.t. CM, then combine with vCM.









What will the subsequently happen to Vcm? To L? To ω? To the
orientations of the principal axes? With no applied torque, how
does ω evolve in time?



λ1 = 6ma2, λ2 = 8ma2, λ3 = 14ma2.

Space and body axes coincide at t = 0.

ω0 = P
ma(16 ,

1
4 , 0). L ≡ aP (1, 2, 0).

ω̇1 = ω2ω3
λ2 − λ3
λ1

ω̇2 = ω3ω1
λ3 − λ1
λ2

ω̇3 = ω1ω2
λ1 − λ2
λ3

http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.nb

http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.pdf

http://positron.hep.upenn.edu/p351/files/0327_strucktriangle_230.avi

https://www.youtube.com/watch?v=IMBRIyxDLss

Try other initial ω vectors:
https://www.youtube.com/watch?v=dVhGyxkBKzI

https://www.youtube.com/watch?v=4Ntgvun8GuY

https://www.youtube.com/watch?v=YKSEu_c3YdY

http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.nb
http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.pdf
http://positron.hep.upenn.edu/p351/files/0327_strucktriangle_230.avi
https://www.youtube.com/watch?v=IMBRIyxDLss
https://www.youtube.com/watch?v=dVhGyxkBKzI
https://www.youtube.com/watch?v=4Ntgvun8GuY
https://www.youtube.com/watch?v=YKSEu_c3YdY


It’s fun to consider e.g. λ3 > λ2 > λ1 for tossed book.
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