Physics 351 — Friday, March 30, 2018

» I'm handing back your graded midterm exams. Was it a
mistake for me not to have done weekly quizzes this semester?
» Turn in HW9 either today or Monday, whichever you prefer.
> Pick up handout for HW10, due next Friday.
» This weekend you'll read Chapter 11 (coupled oscillators,
normal modes, etc.), but it will take us a few more days to
finish Chapter 10 in class.
» FY| — intuitive description of precession:
http://positron.hep.upenn.edu/p351/files/0331_george_abell_precession.pdf

median=91, mean=80
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What will the subsequently happen to V.7 To L? To w? To the
orientations of the principal axes? With no applied torque, how
does w evolve in time?



A1 = 6ma?, Ao = 8ma?, A3 = 14ma?.
Space and body axes coincide at ¢ = 0.
wo = L (1 1 0). L=aP(1,2,0).
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http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.nb
http://positron.hep.upenn.edu/p351/files/0327 _strucktriangle.pdf
http://positron.hep.upenn.edu/p351/files/0327_strucktriangle_230.avi
https://www.youtube.com/watch?v=IMBRIyxDLss
Try other initial w vectors:

https://www.youtube.com/watch?v=dVhGyxkBKzI
https://www.youtube.com/watch?v=4Ntgvun8GuY
https://www.youtube.com/watch?v=YKSEu_c3YdY
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It's fun to consider e.g. )\3 > Ay > )\1 for tossed book.
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If you look down the é3 axis, you'll see the tip of w tracing out an
(A3—=A2) A2
(A3—A1)A1”

ellipse whose ratio of axis lengths is
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A1 = 6ma?, Ay = 8ma?, A3 = 14ma?.
Space and body axes coincide at ¢ = 0.

wo = 1-(4,10). L=aP(1,2,0).
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http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.nb
http://positron.hep.upenn.edu/p351/files/0327 _strucktriangle.pdf
http://positron.hep.upenn.edu/p351/files/0327_strucktriangle_230.avi
https://www.youtube.com/watch?v=IMBRIyxDLss
Consider how you would go about calculating the (z,y, z) (space)
positions of vertices A, C, D vs. time. | did it by keeping track of the
(z,y, z) coordinates of the unit vectors é;, é>, é3 as a function of time.
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Torque-free precession of symmetric top (more on this later):
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As seen from body frame, w precesses about é3 with frequency €.
As seen from the body frame, what does L do?

What does the situation look like from the space frame?
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As seen from body frame, L and w precess about (fixed) é3 with
frequency = Q = w3(A — A\3)/A, where A = X\ = \o.

As seen from the space frame, é3 and w precess about (fixed) L,
at a frequency that takes some effort to calculate. (You'll calculate
the space-frame precession frequency, 25, on a HW problem next
week. It is much more involved than you might expect.)



Video from two 2015 students traveling back from spring break:
https://www.youtube.com/watch?v=bVpPple_174

Astronaut version:
https://youtu.be/fPI-rSwAQNg

Cosmonaut version (!): Dzhanibekov effect
https://youtu.be/dL6Pt10_gSE

https://www.youtube.com/watch?v=BGRWg4aV2omw

’ .. " .
Someone’s quasi-intuitive explanation:
http://mathoverflow.net/questions/81960/
the-dzhanibekov-effect-an-exercise-in-mechanics-or-fiction-explain-mathemat
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(Taylor 10.35) A rigid body consists of:

m at (a,0,0) = a(1, 0, 0)

2m at (0,a,a) = a(0, 1, 1)

3m at (0,a,—a) = a(0, 1,-1)

Find inertia tensor I, its principal moments, and the principal axes.
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3% WolframAlpha

[ eigenvectors {{10,0,0},{0,6,1},{0,1,6}}

B LD a5y

Input:
10 00
Eigenvectors[[ 0 6 1]]
016
Results:
vi=1(10,0)
v2=1(0,1,1)
va=1(0,-1,1)

Caorresponding eigenvalues:
A =10
=7

A3=5




Mil- m = ({10, 0, 0}, {0, 6, 1}, {0, 1, 6}}
Jut[1]= {{lo ’ O}I {Ol 6, l}l {Ol 1, 6}}

In2:= MatrixForm[m]

2)//MatrixForm=
10 0 0O
0 61 ]
0 16

In[3]= Eigenvalues [m]

outzl= {10, 7, 5}

In[4]:- Eigenvectors[m]

)UT[4 {{l O O}: {OI ll l}l {OI _ll l}}

inj5:= Eigensystem[m]

sl {{10, 7, 5},
{{l, O, O}; {OI ll l}l {Ol _ll l}}}



One useful tool for relating the fixed &, ¢, 2 axes to the rigid
body's é1, éo, €3, axes is the “Euler angles,” ¢, 0, 1.

(Another way, which | used in the simulation program for the
struck triangle, is simply to keep track instant-by-instant of the
x,y,z components of &;(t), éx(t), és(t). But if you're given the
three Euler angles, you can compute the x,y, 2 components of the
body axes é1, €2, é3.)
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Question: Suppose | rotate the vector % 23
(z,y) = R(cos a,sin ) by an angle ¢ .
(about the origin). How would you
write 7’ as a linear combination of x
and y? How about 3/ as a linear
combination of z and y?




Kofate by amgle p obodt £

/X7 [csam';& LT AVAAY

e ey o —
¥ = YCosh — y Sinw Y
7 ™ | / o

T = X - 2
:} = }LS(/\?S = jcﬁji—lﬁwp Liy)
- i

X, g)= R Cof%, Sinsl) a

v/ / 7 .

[ 57 = R(Cosbwd) cin(tr3)

=R{@ososp =Sinksing o sindkcosg + catksing |

™

=f Cafch — 4 ¢ @J-l— A
/\X e ”‘/5 @ + ko ?5/)




on \S bW % g J:_m.‘]:_,_\_. 'é'\
O
S

[x’ [Csry =Sing Za
[y | = [swg it [Y
~ ¢ 0o I F \\}:
&'/ O & "

K50 ar abaye ; (=2

Potol by ongle & obat 7

S
J
_x1 [as®& D Lae \ [x/\
(:}w — | o O of
)-S5 -\ L]
\& k /
S

Mnemonic: for infinitessimal rotation angle e < 1, 7 — r + e X r. So

for rotation about ¢, (1,0,0) — (1,0, —¢), since eg X & = —eZ.
[m] = =



The hardest part of writing down 3 x 3 rotation matrices is
remembering where to put the minus sign.
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Once you've worked out one case correctly (e.g. from a diagram),

here's a trick (thanks to 2015 student Adam Zachar) for working
out the other two ...



Just add two more columns and two more rows, following the
cycles: zyz, yzz, zry. Then draw boxes of size 3 x 3.
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(Check previous result using Mathematica.)

In[}= RotationMatrix[¢, {0, 0, 1}] // MatrixForm

Out[1])/MatrixForm=
Cos[¢] -Sin[¢] O
Sin[¢] Cos|[¢] OJ
0 0 1

In2]:- RotationMatrix[e, {0, 1, 0}] // MatrixForm
Out[2)/MatrixForm=
Cos[6] 0 sin[oO]
0 1 0
-8in[&] 0 Cos|[9]

In3]:= RotationMatrix[a, {1, 0, 0}] // MatrixForm
Out[3]//MatrixForm=
1 0 0
0 Cos|a] —Sin[a]]
0 sin[a] Cos[a]




Euler angles: can move (x,y, z) axes to arbitrary orientation.
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In2]= RetationMatrix[¢] // MatrixForm

Outf2)/MatrbFam=
[Cos[¢] -8in[éd] '|I
Sin[¢] Ces[¢] |

Ini4]= RetationMatrix[¢, {0, 0, 1}] // MatrixForm

Oul[4)//MatrixFarm=
{Cos[¢] -Sin[d] O

Sin[¢] Cos[¢p] O ]

o] 0 1)

Ins]= RotationMatrix[e, {0, 1, 0}] // MatrixForm

Cul[5)/MatrixFam=
{ Ces[8] 0 8in[a]
0 1 0 ]
,-8in[a] 0 Cos|[a] )

In[10]= rl = RotationMatrix([é, {0, 0, 1}]s
r2 = RotationMatrix[e, {0, 1, 0}];
r3 = RotationMatrix[y, {0, 0, 1}]:
ri.r2.rl // MatrixFerm

Cull13)/MatrixFam=
{Cos[d] Coz [p] Cos (] - Sin[¢] Sin[if] -Co=[g] Cos (] Sin[d] - Cos= [d] Sin[i]
Cos [§i] 8in[¢] + Cos [9] Cos [¢] Sin[y] Cos[¢] Cos[if] - Cos[a] Bin[@] Sin[i]

~Cos[¢] 8in (8] s5in[@] sin|d]

Cos [if] 8in[9]
Sin[9] sin[y]
Cos [2]



Let the Euler angles ¢, 0, ¢ vary with time, as body rotates.
I'll write out more steps than Taylor does, and | may confuse you
by saying (Z,9,2) — (e’l’,é’z’,ég’) — (€], €é,,€é5) — (é1,€é2,€3).
| do this so that my (&, &}, &%) are the same as Taylor's.

1. Rotate by ¢ about 2 — €&/, é,. (&4 = 2.)

2. Rotate by 0 about &5 — &, é;. (&, = é5.)

l\.’)

3. Rotate by 1) about é;5 — é;, é;. (é3 = €5.)
sU o7 “;’_
A
Q"
@
/)(P /3(9 // ‘ )S >£JI
Q” @ef—:/\ 3 /é
¢z+96 —|—’l7ZJ = ¢z+962+1/163

Remarkable trick: We can write w as vector sum of 3 separate
angular-velocity vectors, about three successive axes.

Next, project w onto more convenient sets of unit vectors.
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Start from w = éﬁ + 9é’2 + 1/) €3 and substitute preferred unit vectors.

In the “space” basis [proof on previous page|:

w = (—9 sin ¢+ sin 0 cos D)+ (9 cos ¢+ sin 0 sin o)y + (¢+1/) cosf)z

In the “body” basis [proof on next page]:

w = (fcz) sin 0 cos 1+0 sin V)ér + ((,b sin @ sin 1)+6 cos V)és + (d) cos 9+7,/'1)é3

Most convenient for symmetric top (Ay = A2): in the “primed” basis (i.e.
before the final rotation by ¢ about é3). Note that é; = és.

w = (—psinb)é, + ()&, + (dcosh + 1)é,

This last one is easiest to see if you consider the instant.at which ¥ = Q.
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Most convenient for symmetric top (A1 = Ag):

w = (—¢sinh)é) + (0)é) + (Ppcosh +1))éy

This basis makes it easy to write down the top's angular
momentum L, kinetic energy T, and Lagrangian L.

L = (—M\¢sin0)é, + (M0)é, + As(dcosd +)és

T = %/\1@2 sin? 0 + 92) + %)\3@ cosf + w)Q

1. . : 1. . .
L= 5)\1(¢2 sin® 0 + 62) + §A3(¢cos9 +1)* — MgRcosf

We then find two ignorable coordinates: ¢ and ). So using the
corresponding conserved quantities, we can reduce the # EOM to a
single-variable problem.



w = (—psinB)é) + ()&, + (dcosh +1))é,

L = (—\¢sinh)é) + (>\ )&} + A3(pcosh +1)é,

L= 41((;5 sin 0 + 6%) + )\3(¢0080+1/1)

— MgRcosf
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(Skip: Just in case you wanted to see the § EOM derived.)
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From the final exam for the course | took, fall 1990. (This turns out to

be the same problem as appears in Feynman's story of the cafeteria plate
that wobbles as it flies through the air.)

An infinitely thin, uniform, square plate of mass m and side d is allowed
to undergo rotation. At time t - 0, the normal to the plate, 33,
is aligned with Z, but the angular velocity vector w deviates from

z by a small angle a@. Work the entire problem to first order in a,
i.e. drop terms of O(u?') or higher.

time = 5
Fa VQ
a
x
100
(a) Show I = Ip{ 0 1 0) and find Ig.
002
(b) Find the maximum angle between 'z‘ and €3 during subsequent motion
of the plate.

(c) When is this maximum deviation first reached?
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As seen from body frame, L and w precess about (fixed) é3 with
frequency 2 = Q = w3(A — A3)/\, where A = A1 = A,

As seen from the space frame, é3 and w precess about (fixed) L,
at frequency Qs = L/\1, which you'll prove in the HW.
http://demonstrations.wolfram.com/FreePrecessionOfARotatingRigidBody/


http://demonstrations.wolfram.com/FreePrecessionOfARotatingRigidBody/

w = w1é] + woés + wsés

symmetric top: A1 = Ao = L = A\Nwié1 + AMw2éa + Azw3és

R A3 R R .~ A3 L R
— = w161+w262+7w383 = w161+W282+w3€3+/\*w363—w363
1 1

A1
L A3 =AM
" = w + " w3€s
L AL — A3 . L R
= —_— e — Q
w )\1 + < )\1 CU3)€3 )\1 + {pes

Last line proves that w, L, and é3 are coplanar (for A\ = \2).
Torque-free (10.94): w = wqcos(Qpt)é1 — wp sin(Qpt)és + w3és
Key trick for understanding “space” and “body” cones: decompose

w into one part that points along L and one part that points along
(or opposite) é3. [Sign of 2, depends on A; vs. A3 magnitudes.]
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Chapter 10 Rotational Motion of Rigid Bodies

e, (fixed)

L (fixed)

(a) Body frame (b) Space frame

Figure 10.9 An axially symmetric body (shown here as a prolate
spheroid or “egg-shaped” solid) is rotating with angular velocity ,
not in the direction of any of the principal axes. (a) As seen in the body
frame, both w and L precess about the symmetry axis, e;, with angular
frequency €2, given by (10.93). (b) As seen in the space frame, L is
fixed, and both @ and e, precess about L with frequency £, given by
(10.96).



Torque-free precession of axially symmetric (A1 = \2) rigid body

L AL — A
w = —+ Qpé3 with Qp = ! 3 w3
)\1 )\1
w = wocos(Qpt)é1 — wosin(Qpt)és + w3és

Qspace = L /A1 points along L. Describes precession of w (and é3)
about L as seen in space frame.

dé L L
ﬁ = wxé3 = <>\1+Qbé3)><é3 = (M)Xég = QspaceXéii

Qpody = —S%€3 points along é3 if A3 > A; (oblate, frisbee) and
points opposite és if A3 < A1 (prolate, US football). Describes
precession of w (and L) about é3 as seen in body frame.

dL L
() =—wxL=— ( + Qbé3> xL = (—Qbég)XL = QbodyXL
de body )\1

Qspace = w + Qbody



8. [This problem is adapted from a problem on the final exam I took for the
analogous course in fall 1990.] A uniform, infinitesimally thick, square plate
of mass m and side length d is allowed to undergo torque-free rotation. At
time ¢ = 0, the normal to the plate, és, is aligned with £, but the angular
velocity vector w deviates from £ by a small angle «v. The figure below depicts
the situation at time ¢ = 0, at which time é, = &, é; = ¢, é3 = 2, and
w = w(cosaZ + sin ad).
Z, e

(0]

1 00
time t=0 (a) Show that I=1Io | 0 1 0
0 0 2

and find the constant Ij.

W

(b) Calculate L at t = 0.

/ [ J
d 7 (c) Sketch é3, w, and L at t = 0.

‘/ (d) Draw/label “body cone” and
—d — “space cone” on your sketch.



8. [This problem is adapted from a problem on the final exam I took for the
analogous course in fall 1990.] A uniform, infinitesimally thick, square plate
of mass m and side length d is allowed to undergo torque-free rotation. At
time ¢ = 0, the normal to the plate, és, is aligned with £, but the angular
velocity vector w deviates from £ by a small angle «. The figure below depicts
the situation at time ¢ = 0, at which time é, = &, é; = ¢, é; = £, and
w = w(cosaZ + sin ad).
7, e (e) Calculate precession frequencies

time t=0 Qbody and Qgpace. Indicate directions

of precession vectors 244y and

Qgpace on drawing.

z
/‘ [ g (f) You argue in HW that
“ Qspace - Qbody + w. Verify (by
writing out components) that this

relationship holds for the Qspace and
Qpody that you calculate for ¢t = 0.




8. [This problem is adapted from a problem on the final exam I took for the
analogous course in fall 1990.] A uniform, infinitesimally thick, square plate
of mass m and side length d is allowed to undergo torque-free rotation. At
time ¢ = 0, the normal to the plate, és, is aligned with £, but the angular
velocity vector w deviates from £ by a small angle «. The figure below depicts
the situation at time ¢ = 0, at which time é, = &, é; = ¢, é; = £, and
w = w(cosaZ + sin ad).
Z, 8 . (g) Find the maximum angle between
time t=0 2 and é3 during subsequent motion of
the plate. Show that in the limit
a < 1, this maximum angle equals .

Z
/ [ 7 (h) When is this maximum deviation

first reached?

video: https://www.youtube.com/
watch?v=0H-d1rIF010



https://www.youtube.com/watch?v=oH-dlrIFO10
https://www.youtube.com/watch?v=oH-dlrIFO10

Just FYI, | put the final exam from 2015 online at
http://positron.hep.upenn.edu/p351/files/exam2015.pdf
Let's work through Problem 1 together, which is the “prolate”
(football-like) analogue of the “oblate” (frisbee-like) problem you'll
work out in HW10.

Physics 351, Spring 2015, Final Exam.

This closed-book exam has (only) 25% weight in your course grade. You can use one sheet of your
own hand-written notes. Please show your work on these pages. The back side of each page is blank,
so you can continue your work on the reverse side if you run out of space. Try to work in a way
that makes your reasoning obvious to me, so that I can give you credit for correct reasoning even in
cases where you might have made a careless error. Correct answers without clear reasoning may not
receive full credit. Clear reasoning is especially important for “show that” questions.

The last page of the exam contains a list of equations that you might find helpful, to complement
your own sheet of notes. You can detach it now if you like, before we begin.

The exam contains five questions, of equal weight. So each question is worth 20%. You might want
to start with whichever questions you find easiest.

Because I believe that most of the learning in a physics course comes from your investing the time to
work through homework problems, most of these exam problems are similar or identical to problems
that you have already solved. The only point of the exams, in my opinion, is to motivate you to take
the weekly homework seriously. So you should find nothing surprising in this exam.


http://positron.hep.upenn.edu/p351/files/exam2015.pdf

Problem 1. A uniform rectangular solid of mass m and
dimensions a x a x a\/3 (volume v/3 a?) is allowed to undergo
torque-free rotation. At time t = 0, the long axis (length a/3) of
the solid is aligned with 2, but the angular velocity vector w
deviates from Z by a small angle o. The figure depicts the
situation at time t = 0, at which time é; = &, é> = 9, é3 = 2,
and w = w(cos az + sin a&).

(Lime t=0)

(a) Show (or argue) that the inertia tensor o

2.0 0 A

hasthefom I =1y 0 2 0 | and find 1
0 01

the constant Ij. @
S

ok

Cperierin)




(b) Calculate the angular momentum vector L at ¢t = 0. Write
L(t = 0) both in terms of €1,2,€3 and in terms of &,9,2. Which
of these two expressions will continue to be valid into the future?

(c) Draw a sketch showing the vectors €3, w, and L at t = 0. Be
sure that the relative orientation of L and w makes sense. This

relative orientation is different for egg-shaped (“prolate”) objects
(A3 < A1) than it is for frisbee-like (“oblate™) objects (A3 > A1).

(d) Draw and label the “body cone” and the “space cone” on your
sketch.

(e) Calculate the precession frequencies Qpody and gpace. Indicate
the directions of the precession vectors 264y and Qspace ON your
drawing. Be careful with the “sign” of the £2y,0qy vector, i.e. be
careful not to draw —{2,64y When you mean to draw Qy04y-



(f) You argued in HW11 that Qspace = Qbody + w. Verify (by
writing out components) that this relationship holds for the Q¢pace
and Qy04y that you calculate for ¢ = 0.

(g) In the a < 1 limit (so tan a ~ «, tan(2a) ~ 2q, etc.), find
the maximum angle between 2 and é3 during subsequent motion
of the solid. (This should be some constant factor times «.) A
simple argument is sufficient here, no calculation.

(h) At what time ¢ is this maximum deviation first reached?

(This problem shows that for an American-football-like object, the
frequency of the wobbling motion is smaller than the frequency of
the spinning motion — which is opposite the conclusion that you
reached for the flying dinner plate, whose wobbling was twice as
fast as its spinning.)
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Problem 1.

A uniform rectangular solid of mass m and dimensions a x a X a+/3 (volume v/3 a?) is allowed
to undergo torque-free rotation.. At time ¢t = 0, the long axis (length av/3) of the solid is aligned
with £, but the angular velocity vector w deviates from £ by a small angle a. The figure depicts the
situation at time ¢ = 0, at which time &, =&, é; =g, 53 =z and w= w(cos a3+ sin ).

(@ bout re. G

(a) Show (or argue) that the inertia tensor‘ihas the form & (‘é]mqw ‘tﬂop
2
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(b) Calculate the angular momentum vector L at t = 0. Write L(t = 0) both in terms of &;,6,,&3

and in terms of #,4,2. Which of these two expressions will continue to be valid into the future?
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(¢) Draw a sketch showing the vectors &3, w, and L at t = 0. Be sure that the relative orientation

of L and w makes sense. This relative orientation is different for egg-shaped (“prolate”) objects
~ ’<\>\3 < A1) than it is for frisbee-like (“oblate”) objects (A3 > Ay).

L
= Y L doe = 2 er[[g:z-‘:?_-m,\_d
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(d) Draw and label the “body cone” and the “space cone” on your sketch. = L

(e) Calculate the precession frequencies Qpoay and Qepace. Indicate the directions of the precession
vectors (pody and {dgpace On your drawing. Be careful with the “sign” of the o4y vector, ie. be
careful not to draw —§lpoay When you mean to draw Qpody-



(e) Calculate the precession frequencies lpogy and Qpace. Indicate the directions of the precession
vectors pody and Qepace 0n your drawing. Be careful with the “sign” of the Qyoqy vector, i.e. be
careful not to draw —$peqy When you mean to draw Qpody-
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(f) You argued in HW11 that Qspace = Qboay + w. Verify (by writing out components) that this
relationship holds for the §2space and £2boay that you calculate for ¢ = 0.
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(g) In the & < 1 limit (so tana = o, tan(2a) ~ 2a, etc.), find the maximum angle between 2 and
&3 during subsequent motion of the solid. (This should be some constant factor times a.) A simple
argument is sufficient here, no calculation.
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(This problem shows that for an Atherican-football-like object, the frequency of the wobbling motion

is smaller than the frequency of the spinning motion — which is opposite the conclusion that you
reached for the flying dinner plate, whose wobbling was twice as fast as its spinning.)



Physics 351 — Friday, March 30, 2018

» I'm handing back your graded midterm exams. Was it a
mistake for me not to have done weekly quizzes this semester?
» Turn in HW9 either today or Monday, whichever you prefer.
> Pick up handout for HW10, due next Friday.
» This weekend you'll read Chapter 11 (coupled oscillators,
normal modes, etc.), but it will take us a few more days to
finish Chapter 10 in class.
» FY| — intuitive description of precession:
http://positron.hep.upenn.edu/p351/files/0331_george_abell_precession.pdf

median=91, mean=80

30 40 50 60 70 80 90 100
midterm exam score
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