
Physics 351 — Monday, April 2, 2018

I You read (or will soon read) Chapter 11 (“coupled
oscillators”), but it will take us a couple more days to finish
Chapter 10 in class. After this, there is only one more “real”
topic: Hamiltonian mechanics (chapter 13).

I Turn in HW9, if you haven’t already.

I HW10 due this Friday. I tried to make it short.

Torque-free precession: astronaut version
https://youtu.be/fPI-rSwAQNg

Cosmonaut version!
https://youtu.be/dL6Pt1O_gSE

If you cook up a plausible inertia matrix for a wing nut that
explains the Dzhanibekov effect, I will be impressed!

https://youtu.be/fPI-rSwAQNg
https://youtu.be/dL6Pt1O_gSE


Video from two 2015 students traveling back from spring break:
https://www.youtube.com/watch?v=bVpPp1e_lZ4

Astronaut version:
https://youtu.be/fPI-rSwAQNg

Cosmonaut version (!): Dzhanibekov effect
https://youtu.be/dL6Pt1O_gSE

https://www.youtube.com/watch?v=BGRWg4aV2mw

Someone’s quasi-intuitive explanation:
http://mathoverflow.net/questions/81960/

the-dzhanibekov-effect-an-exercise-in-mechanics-or-fiction-explain-mathemat

https://www.youtube.com/watch?v=bVpPp1e_lZ4
https://youtu.be/fPI-rSwAQNg
https://youtu.be/dL6Pt1O_gSE
https://www.youtube.com/watch?v=BGRWg4aV2mw
http://mathoverflow.net/questions/81960/the-dzhanibekov-effect-an-exercise-in-mechanics-or-fiction-explain-mathemat
http://mathoverflow.net/questions/81960/the-dzhanibekov-effect-an-exercise-in-mechanics-or-fiction-explain-mathemat




Torque-free precession of symmetric top:

As seen from body frame, ω precesses about ê3 with frequency Ω.
As seen from the body frame, what does L do?

What does the situation look like from the space frame?



As seen from body frame, L and ω precess about (fixed) ê3 with
frequency Ωb ≡ Ω = ω3(λ− λ3)/λ, where λ = λ1 = λ2.

As seen from the space frame, ê3 and ω precess about (fixed) L,
at a frequency that takes some effort to calculate. (You’ll calculate
the space-frame precession frequency, Ωs, on HW10. It is much
more involved than you might expect.)



http://demonstrations.wolfram.com/FreePrecessionOfARotatingRigidBody/

As seen from body frame, L and ω precess about (fixed) ê3 with
frequency Ωb ≡ Ω = ω3(λ− λ3)/λ, where λ = λ1 = λ2.

As seen from the space frame, ê3 and ω precess about (fixed) L,
at frequency Ωs = L/λ1, which you’ll prove in the HW.

http://demonstrations.wolfram.com/FreePrecessionOfARotatingRigidBody/


From the final exam for the course I took, fall 1990. (This turns out to
be the same problem as appears in Feynman’s story of the cafeteria plate
that wobbles as it flies through the air.)



ω = ω1ê1 + ω2ê2 + ω3ê3

symmetric top: λ1 = λ2 ⇒ L = λ1ω1ê1 + λ1ω2ê2 + λ3ω3ê3
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Last line proves that ω, L, and ê3 are coplanar (for λ1 = λ2).

Torque-free (10.94): ω = ω0 cos(Ωbt)ê1 − ω0 sin(Ωbt)ê2 + ω3ê3

Key trick for understanding “space” and “body” cones: decompose
ω into one part that points along L and one part that points along
(or opposite) ê3. [Sign of Ωb depends on λ1 vs. λ3 magnitudes.]





Torque-free precession of axially symmetric (λ1 = λ2) rigid body

ω =
L

λ1
+ Ωbê3 with Ωb =

λ1 − λ3
λ1

ω3

ω = ω0 cos(Ωbt)ê1 − ω0 sin(Ωbt)ê2 + ω3ê3

Ωspace = L/λ1 points along L. Describes precession of ω (and ê3)
about L as seen in space frame.

dê3
dt

= ω×ê3 =

(
L

λ1
+ Ωbê3

)
×ê3 =

(
L

λ1

)
×ê3 = Ωspace×ê3

Ωbody = −Ωbê3 points along ê3 if λ3 > λ1 (oblate, frisbee) and
points opposite ê3 if λ3 < λ1 (prolate, US football). Describes
precession of ω (and L) about ê3 as seen in body frame.(

dL

dt

)
body

= −ω×L = −
(
L

λ1
+ Ωbê3

)
×L = (−Ωbê3)×L = Ωbody×L

Ωspace = ω + Ωbody



(a) Show that I = I0

 1 0 0
0 1 0
0 0 2


and find the constant I0.

(b) Calculate L at t = 0.

(c) Sketch ê3, ω, and L at t = 0.

(d) Draw/label “body cone” and
“space cone” on your sketch.



(e) Calculate precession frequencies
Ωbody and Ωspace. Indicate directions
of precession vectors Ωbody and
Ωspace on drawing.

(f) You argue in HW that
Ωspace = Ωbody + ω. Verify (by
writing out components) that this
relationship holds for the Ωspace and
Ωbody that you calculate for t = 0.



(g) Find the maximum angle between
ẑ and ê3 during subsequent motion of
the plate. Show that in the limit
α� 1, this maximum angle equals α.

(h) When is this maximum deviation
first reached?

video: https://www.youtube.com/

watch?v=oH-dlrIFO10

https://www.youtube.com/watch?v=oH-dlrIFO10
https://www.youtube.com/watch?v=oH-dlrIFO10


Just FYI, I put the final exams from 2015+2017 online at e.g.
http://positron.hep.upenn.edu/p351/files/exam2015.pdf

Let’s work through Problem 1 together, which is the “prolate”
(football-like) analogue of the “oblate” (frisbee-like) problem you’ll
work out in HW10.

http://positron.hep.upenn.edu/p351/files/exam2015.pdf


Problem 1. A uniform rectangular solid of mass m and
dimensions a× a× a

√
3 (volume

√
3 a3) is allowed to undergo

torque-free rotation. At time t = 0, the long axis (length a
√

3) of
the solid is aligned with ẑ, but the angular velocity vector ω
deviates from ẑ by a small angle α. The figure depicts the
situation at time t = 0, at which time ê1 = x̂, ê2 = ŷ, ê3 = ẑ,
and ω = ω(cosαẑ + sinαx̂).

(a) Show (or argue) that the inertia tensor

has the form I = I0

 2 0 0
0 2 0
0 0 1

 and find

the constant I0.



(b) Calculate the angular momentum vector L at t = 0. Write
L(t = 0) both in terms of ê1,ê2,ê3 and in terms of x̂,ŷ,ẑ. Which
of these two expressions will continue to be valid into the future?

(c) Draw a sketch showing the vectors ê3, ω, and L at t = 0. Be
sure that the relative orientation of L and ω makes sense. This
relative orientation is different for egg-shaped (“prolate”) objects
(λ3 < λ1) than it is for frisbee-like (“oblate”) objects (λ3 > λ1).

(d) Draw and label the “body cone” and the “space cone” on your
sketch.

(e) Calculate the precession frequencies Ωbody and Ωspace. Indicate
the directions of the precession vectors Ωbody and Ωspace on your
drawing. Be careful with the “sign” of the Ωbody vector, i.e. be
careful not to draw −Ωbody when you mean to draw Ωbody.



(f) You argued in HW that Ωspace = Ωbody + ω. Verify (by
writing out components) that this relationship holds for the Ωspace

and Ωbody that you calculate for t = 0.

(g) In the α� 1 limit (so tanα ≈ α, tan(2α) ≈ 2α, etc.), find
the maximum angle between ẑ and ê3 during subsequent motion
of the solid. (This should be some constant factor times α.) A
simple argument is sufficient here, no calculation.

(h) At what time t is this maximum deviation first reached?

(This problem shows that for an American-football-like object, the
frequency of the wobbling motion is smaller than the frequency of
the spinning motion — which is opposite the conclusion that you
reached for the flying dinner plate, whose wobbling was twice as
fast as its spinning.)















(Taylor 10.35) A rigid body consists of:
m at (a, 0, 0) = a(1, 0, 0)

2m at (0, a, a) = a(0, 1, 1)
3m at (0, a,−a) = a(0, 1,−1)
Find inertia tensor I, its principal moments, and the principal axes.













One useful tool for relating the fixed x̂, ŷ, ẑ axes to the rigid
body’s ê1, ê2, ê3, axes is the “Euler angles,” φ, θ, ψ.

(Another way, which I used in the simulation program for the
struck triangle, is simply to keep track instant-by-instant of the
x, y, z components of ê1(t), ê2(t), ê3(t). But if you’re given the
three Euler angles, you can compute the x, y, z components of the
body axes ê1, ê2, ê3.)

Question: Suppose I rotate the vector
(x, y) = R(cosα, sinα) by an angle φ
(about the origin). How would you
write x′ as a linear combination of x
and y? How about y′ as a linear
combination of x and y?





Mnemonic: for infinitessimal rotation angle ε� 1, r → r + εω̂ × r. So
for rotation about ŷ, (1, 0, 0)→ (1, 0,−ε), since εŷ × x̂ = −εẑ.



The hardest part of writing down 3× 3 rotation matrices is
remembering where to put the minus sign.

Once you’ve worked out one case correctly (e.g. from a diagram),
here’s a trick (thanks to 2015 student Adam Zachar) for working
out the other two . . .



Just add two more columns and two more rows, following the
cycles: xyz, yzx, zxy. Then draw boxes of size 3× 3.



(Check previous result using Mathematica.)



Euler angles: can move (x, y, z) axes to arbitrary orientation.





Let the Euler angles φ, θ, ψ vary with time, as body rotates.
I’ll write out more steps than Taylor does, and I may confuse you
by saying (x̂, ŷ, ẑ) → (ê′′1, ê

′′
2, ê

′′
3) → (ê′1, ê

′
2, ê

′
3) → (ê1, ê2, ê3).

I do this so that my (ê′1, ê
′
2, ê

′
3) are the same as Taylor’s.

1. Rotate by φ about ẑ → ê′′1, ê′′2. (ê′′3 = ẑ.)

2. Rotate by θ about ê′′2 → ê′1, ê′3. (ê′2 = ê′′2.)

3. Rotate by ψ about ê′3 → ê1, ê2. (ê3 = ê′3.)

ω = φ̇ ẑ + θ̇ ê′′2 + ψ̇ ê′3 = φ̇ ẑ + θ̇ ê′2 + ψ̇ ê3

Remarkable trick: We can write ω as vector sum of 3 separate
angular-velocity vectors, about three successive axes.

Next, project ω onto more convenient sets of unit vectors.



(Skip this — here for reference)



Start from ω = φ̇ ẑ + θ̇ ê′2 + ψ̇ ê3 and substitute preferred unit vectors.
In the “space” basis [proof on previous page]:

ω = (−θ̇ sinφ+ψ̇ sin θ cosφ)x̂+ (θ̇ cosφ+ψ̇ sin θ sinφ)ŷ + (φ̇+ψ̇ cos θ)ẑ

In the “body” basis [proof on next page]:

ω = (−φ̇ sin θ cosψ+θ̇ sinψ)ê1 + (φ̇ sin θ sinψ+θ̇ cosψ)ê2 + (φ̇ cos θ+ψ̇)ê3

Most convenient for symmetric top (λ1 = λ2): in the “primed” basis (i.e.
before the final rotation by ψ about ê3). Note that ê′3 = ê3.

ω = (−φ̇ sin θ)ê′1 + (θ̇)ê′2 + (φ̇ cos θ + ψ̇)ê′3

This last one is easiest to see if you consider the instant at which ψ = 0.





Most convenient for symmetric top (λ1 = λ2):

ω = (−φ̇ sin θ)ê′1 + (θ̇)ê′2 + (φ̇ cos θ + ψ̇)ê′3

This basis makes it easy to write down the top’s angular
momentum L, kinetic energy T , and Lagrangian L.

L = (−λ1φ̇ sin θ)ê′1 + (λ1θ̇)ê
′
2 + λ3(φ̇ cos θ + ψ̇)ê′3

T =
1

2
λ1(φ̇

2 sin2 θ + θ̇2) +
1

2
λ3(φ̇ cos θ + ψ̇)2

L =
1

2
λ1(φ̇

2 sin2 θ + θ̇2) +
1

2
λ3(φ̇ cos θ + ψ̇)2 −MgR cos θ

We then find two ignorable coordinates: φ and ψ. So using the
corresponding conserved quantities, we can reduce the θ EOM to a
single-variable problem.



ω = (−φ̇ sin θ)ê′1 + (θ̇)ê′2 + (φ̇ cos θ + ψ̇)ê′3

L = (−λ1φ̇ sin θ)ê′1 + (λ1θ̇)ê
′
2 + λ3(φ̇ cos θ + ψ̇)ê′3

L =
1

2
λ1(φ̇2 sin2 θ + θ̇2) +

1

2
λ3(φ̇ cos θ + ψ̇)2 −MgR cos θ



L =
1

2
λ1(φ̇2 sin2 θ + θ̇2) +

1

2
λ3(φ̇ cos θ + ψ̇)2 −MgR cos θ





(Skip: Just in case you wanted to see the θ EOM derived.)

L =
1

2
λ1(φ̇

2 sin2 θ + θ̇2) +
1

2
λ3(φ̇ cos θ + ψ̇)2 −MgR cos θ
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