Physics 351 — Friday, April 6, 2018

- Turn in HW10 either today or Monday, as you prefer. Grace will offer an extra help session this Sunday (4/8), 1pm–3pm in DRL 3W2.
- Pick up handout for HW11, due next Friday.
- This weekend, read Taylor's chapter 13 (Hamiltonian mechanics), which we'll start to discuss on Wednesday.
 Hamiltonians will be the last major topic of the semester.
- We'll spend Monday on coupled oscillators (chapter 11), so if you didn't read it last weekend, please do so now.

One useful tool for relating the fixed \hat{x} , \hat{y} , \hat{z} axes to the rigid body's \hat{e}_1 , \hat{e}_2 , \hat{e}_3 , axes is the "Euler angles," ϕ , θ , ψ .

(Another way, which I used in the simulation program for the struck triangle (from a few days ago), is simply to keep track instant-by-instant of the x, y, z components of $\hat{e}_1(t)$, $\hat{e}_2(t)$, $\hat{e}_3(t)$. But if you're given the three Euler angles, you can compute the x, y, z components of the body axes \hat{e}_1 , \hat{e}_2 , \hat{e}_3 .)

Question: Suppose I rotate the vector $(x, y) = R(\cos \alpha, \sin \alpha)$ by an angle ϕ (about the origin). How would you write x' as a linear combination of x and y? How about y' as a linear combination of x and y?

Rotate by angle & about 2 $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} cos\phi & -sin\phi \\ sin\phi & cos\phi \end{pmatrix}$ $\chi' = \chi \cos \phi - \gamma \sin \chi$ $y' = \chi sin\phi + \gamma cos\phi$ R (Ky) (X, y)=R(COSK, Sind) $(X, y') = R(\cos(\alpha + \phi), \sin(\alpha + \phi))$ = R (cosk cosk - sinksing, sind cosk + cosksing) = (xcorp-ysing, ycorp + ksing)

Rotate angle \$ about *ni2-(ask Sind 0 l'as above ! 2'=2 angle & about 0200 Sino Case

Mnemonic: for infinitessimal rotation angle $\epsilon \ll 1$, $r \to r + \epsilon \hat{\omega} \times r$. So for rotation about \hat{y} , $(1,0,0) \to (1,0,-\epsilon)$, since $\epsilon \hat{y} \times \hat{x} = -\epsilon \hat{z}$.

The hardest part of writing down 3×3 rotation matrices is remembering where to put the minus sign.

Once you've worked out one case correctly (e.g. from a diagram), here's a trick (thanks to 2015 student Adam Zachar) for working out the other two ...

Just add two more columns and two more rows, following the cycles: xyz, yzx, zxy. Then draw boxes of size 3×3 .

▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 - のへ⊙

(Check previous result using Mathematica.)

In[1]:= RotationMatrix[\$\phi\$, {0, 0, 1}] // MatrixForm

Out[1]//MatrixForm=

$$egin{array}{c} \cos \left[\phi
ight] & -\sin \left[\phi
ight] & 0 \ \sin \left[\phi
ight] & \cos \left[\phi
ight] & 0 \ 0 & 0 & 1 \end{array} egin{array}{c} 0 & 0 & 1 \end{array}$$

In[2]:= RotationMatrix[0, {0, 1, 0}] // MatrixForm

Out[2]//MatrixForm=

 $\begin{pmatrix} \cos\left[\theta\right] & 0 & \sin\left[\theta\right] \\ 0 & 1 & 0 \\ -\sin\left[\theta\right] & 0 & \cos\left[\theta\right] \end{pmatrix}$

In[3]:= RotationMatrix[a, {1, 0, 0}] // MatrixForm

Out[3]//MatrixForm=

by about 2 Rotat rotate by a about y (e; ten potate by & about 2" (?) $\frac{4\pi i^2}{8\pi i^2} = \frac{8\pi i^2}{6\pi i^2} + \frac{6\pi i^2}{6\pi i^2} = \frac{6\pi i^2}{6\pi i^2} + \frac{6\pi$ 0 VIII COCOCY-SOSY - COSOCY-COSO 02 - 20 CØ SQ + SQ CQ - CO SQ SQ + CQCQ SQ SQ CO yin

Euler angles: can move (x, y, z) axes to arbitrary orientation.

In[2]:= RotationMatrix[\$\phi] // MatrixForm

Out[2]//MatrixForm=

 $\begin{pmatrix} \cos[\phi] & -\sin[\phi] \\ \sin[\phi] & \cos[\phi] \end{pmatrix}$

In[4]:= RotationMatrix[\$\phi\$, {0, 0, 1}] // MatrixForm

Out[4]//MatrixForm=

 $\begin{pmatrix} \cos\left[\phi\right] & -\sin\left[\phi\right] & 0\\ \sin\left[\phi\right] & \cos\left[\phi\right] & 0\\ 0 & 0 & 1 \end{pmatrix}$

In[5]:= RotationMatrix[0, {0, 1, 0}] // MatrixForm

Out[5]//MatrixForm=

```
\begin{pmatrix} \cos\left[\Theta\right] & 0 & \sin\left[\Theta\right] \\ 0 & 1 & 0 \\ -\sin\left[\Theta\right] & 0 & \cos\left[\Theta\right] \end{pmatrix}
\ln[10] = r1 = RotationMatrix[\phi, \{0, 0, 1\}];
r2 = RotationMatrix[\Theta, \{0, 1, 0\}];
r3 = RotationMatrix[\psi, \{0, 0, 1\}];
r3 , r2 , r1 // MatrixForm
```

Out[13]//MatrixForm=

```
 \begin{pmatrix} \cos\left[\theta\right] \cos\left[\psi\right] - \sin\left[\phi\right] \sin\left[\psi\right] - \cos\left[\theta\right] \cos\left[\psi\right] \sin\left[\phi\right] - \cos\left[\theta\right] \sin\left[\psi\right] \cos\left[\psi\right] \sin\left[\psi\right] \cos\left[\psi\right] \sin\left[\theta\right] \\ \cos\left[\psi\right] \sin\left[\phi\right] + \cos\left[\theta\right] \cos\left[\phi\right] \sin\left[\psi\right] & \cos\left[\theta\right] \cos\left[\phi\right] - \cos\left[\theta\right] \sin\left[\phi\right] \sin\left[\psi\right] & \sin\left[\theta\right] \sin\left[\psi\right] \\ -\cos\left[\phi\right] \sin\left[\theta\right] & \sin\left[\theta\right] & \sin\left[\theta\right] & \cos\left[\theta\right] \sin\left[\phi\right] \\ \end{pmatrix} \end{cases}
```

(+)

Let the Euler angles ϕ , θ , ψ vary with time, as body rotates. I'll write out more steps than Taylor does, and I may confuse you by saying $(\hat{x}, \hat{y}, \hat{z}) \rightarrow (\hat{e}'_1, \hat{e}'_2, \hat{e}'_3) \rightarrow (\hat{e}'_1, \hat{e}'_2, \hat{e}_3) \rightarrow (\hat{e}_1, \hat{e}_2, \hat{e}_3)$. I do this so that my $(\hat{e}'_1, \hat{e}'_2, \hat{e}'_3)$ are the same as Taylor's.

- 1. Rotate by ϕ about $\hat{m{z}} o \hat{m{e}}_1''$, $\hat{m{e}}_2''$. $(\hat{m{e}}_3''=\hat{m{z}}.)$
- 2. Rotate by heta about $\hat{e}_2'' o \hat{e}_1'$, \hat{e}_3' . $(\hat{e}_2' = \hat{e}_2'')$
- 3. Rotate by ψ about $\hat{e}'_3
 ightarrow \hat{e}_1$, \hat{e}_2 . $(\hat{e}_3 = \hat{e}'_3.)$

 $\omega \; = \; \dot{\phi} \, \hat{z} + \dot{\theta} \, \hat{e}_2'' + \dot{\psi} \, \hat{e}_3' \; = \; \dot{\phi} \, \hat{z} + \dot{\theta} \, \hat{e}_2' + \dot{\psi} \, \hat{e}_3$

Remarkable trick: We can write ω as vector sum of 3 separate angular-velocity vectors, about three successive axes.

Next, project ω onto more convenient sets of unit vectors.

(Skip this — here for reference) (orthogonal matrix's inverse = transpose) $\hat{e}_{i}'' = \hat{\chi}_{cos} \phi + \hat{y}_{sin} \phi$ $\hat{e}_{i}'' = -\hat{\chi}_{sin} \phi + \hat{y}_{cos} \phi$ $\hat{e}_{i}'' = \hat{\chi}$ $\hat{\chi} = \hat{e}_{1}^{\prime\prime}(\cos\phi - \hat{e}_{2}^{\prime\prime}\sin\phi)$ $\hat{\chi} = \hat{e}_{1}^{\prime\prime}\sin\phi + \hat{e}_{2}^{\prime\prime}\cos\phi$ $\hat{e}'_{1} = \hat{e}''_{1} \cos \theta - \hat{e}''_{3} \sin \theta$ $\hat{e}'_{3} = \hat{e}''_{1} \sin \theta + \hat{e}''_{3} \cos \theta$ $\hat{e}'_{3} = \hat{e}''_{3}$ $\hat{e}_{3}^{\prime\prime} = \hat{e}_{1}^{\prime} (\underline{\varphi} \partial_{+} \hat{e}_{3}^{\prime} \underline{\varsigma}_{1 \partial \theta} + \hat{e}_{3}^{\prime} \underline$ $\hat{e}_1 = \hat{e}_1' \cos \psi + \hat{e}_2' \sin \psi$ $\hat{e}_2 = -\hat{e}_1' \sin \psi + \hat{e}_2' \cos \psi$ $\hat{e}_3 = \hat{e}_2'$ $\hat{e}_1' = \hat{e}_1 \cos \psi - \hat{e}_2 \sin \psi$ $\hat{e}_2' = \hat{e}_1 \sin \psi + \hat{e}_2 \cos \psi$ $\omega = \dot{\phi} + \Theta \hat{e}_{2}'' + \dot{\psi} \hat{e}_{3}' = \dot{\phi} + \Theta (-\dot{x} \sin \phi + \dot{y} \cos \phi) + \psi (\hat{e}_{1}' \sin \phi + \dot{g}' \cos \phi)$ $\omega = (-0sins, +0corp, \dot{\varphi}) + \psi(sing(\dot{x}cosp+\dot{y}sing) + cosp(\dot{z}))$ $\mathcal{W} = (-\partial sin \phi + \psi sin \theta \cos \phi, \theta \cos \phi + \psi sin \theta \sin \phi, \phi + \psi \cos \phi)$ (INSPACE AKES)

Start from $\boldsymbol{\omega} = \dot{\phi} \, \hat{\boldsymbol{z}} + \dot{\theta} \, \hat{\boldsymbol{e}}_2' + \dot{\psi} \, \hat{\boldsymbol{e}}_3$ and substitute preferred unit vectors. In the "space" basis [proof on previous page]:

 $\boldsymbol{\omega} = (-\dot{\theta}\sin\phi + \dot{\psi}\sin\theta\cos\phi)\hat{\boldsymbol{x}} + (\dot{\theta}\cos\phi + \dot{\psi}\sin\theta\sin\phi)\hat{\boldsymbol{y}} + (\dot{\phi} + \dot{\psi}\cos\theta)\hat{\boldsymbol{z}}$

In the "body" basis [proof on next page]:

 $\boldsymbol{\omega} = (-\dot{\phi}\sin\theta\cos\psi + \dot{\theta}\sin\psi)\hat{\boldsymbol{e}}_1 + (\dot{\phi}\sin\theta\sin\psi + \dot{\theta}\cos\psi)\hat{\boldsymbol{e}}_2 + (\dot{\phi}\cos\theta + \dot{\psi})\hat{\boldsymbol{e}}_3$

Most convenient for symmetric top $(\lambda_1 = \lambda_2)$: in the "primed" basis (i.e. before the final rotation by ψ about \hat{e}_3). Note that $\hat{e}'_3 = \hat{e}_3$.

$$\boldsymbol{\omega} = (-\dot{\phi}\sin\theta)\boldsymbol{\hat{e}}_1' + (\dot{\theta})\boldsymbol{\hat{e}}_2' + (\dot{\phi}\cos\theta + \dot{\psi})\boldsymbol{\hat{e}}_3'$$

This last one is easiest to see if you consider the instant at which $\psi = 0$.

 $\hat{e}_{,''=} + \hat{y} \cos \phi + \hat{y} \sin \phi$ $\hat{e}_{,''=} - \hat{x} \sin \phi + \hat{y} \cos \phi$ $\hat{e}_{,''=} = \hat{z}$ $\hat{x} = \hat{e}_{1}^{"}(\cos\phi - \hat{e}_{2}^{"}\sin\phi)$ $\hat{y} = \hat{e}_{1}^{\prime\prime} \sin x + \hat{e}_{2}^{\prime\prime} \cos x$ $\hat{e}'_{1} = \hat{e}''_{1} \cos \theta - \hat{e}''_{3} \sin \theta \\
\hat{e}'_{3} = \hat{e}''_{1} \sin \theta + \hat{e}''_{3} \cos \theta \\
\hat{e}'_{2} = \hat{e}''_{3} \sin \theta + \hat{e}''_{3} \cos \theta \\
\hat{e}'_{2} = \hat{e}''_{3} \sin \theta \\
\hat{e}'_{2} = \hat{e}''_{3} \sin \theta \\
\hat{e}'_{3} = \hat{e}''_{3} \sin^{2} \theta \\
\hat{e}''_{3} = \hat{e}''_{3} \sin^{2} \theta \\
\hat{e}''_{3$ $\hat{e}_{3}'' = \hat{e}_{3}' (so + \hat{e}_{3}'s) \hat{n} o$ $\hat{e}_{3}'' = -\hat{e}_{3}'s \hat{n} o + \hat{e}_{3}' coro$ $\hat{e}_1 = \hat{e}_1 \cos \psi + \hat{e}_2 \sin \psi$ $\hat{e}'_{1} = \hat{e}_{1}\cos\psi - \hat{e}_{2}\sin\psi$ $\hat{e}_{2}' = \hat{e}_{1}\sin\psi + \hat{e}_{2}\cos\psi$ $= -\hat{e}_{1}^{\prime} \sin \psi + \hat{e}_{2}^{\prime} \cos \psi$ $\hat{e}_{2} = \hat{e}_{2}^{\prime}$ $\omega = \phi \hat{z} + \theta \hat{e}_2'' + \psi \hat{e}_3''$ $= \phi e_3' + \partial e_2'' + \gamma e_3'$ $= \phi(-\hat{e}_1' \sin \theta + \hat{e}_3' \cos \theta) + \hat{\theta}(\hat{e}_2') + \hat{\psi}(\hat{e}_3')$ $-\dot{\phi}sin\phi(\hat{e}_{1}')+\dot{\phi}cos\phi(\hat{e}_{3}')+\dot{\phi}(\hat{e}_{2}')+\dot{\psi}(\hat{e}_{3}')$ = $[-\phi\sin\theta(\hat{e}_1sy - \hat{e}_2sin\psi) + \phi\cos\theta\hat{e}_3] + \dot{\theta}(\hat{e}_1sin\psi + \hat{e}_2\cos\psi) + \dot{\psi}\hat{e}_3'$ $= \hat{e}_1 \left(-\dot{\phi} \sin \theta \cos \psi + \dot{\theta} \sin \psi \right) + \hat{e}_2 \left(\dot{\phi} \sin \theta \sin \psi + \dot{\theta} \cos \psi \right) + \hat{e}_3 \left(\dot{\phi} \cos \theta + \dot{\psi} \right)$

SAC

Most convenient for symmetric top $(\lambda_1 = \lambda_2)$:

$$\boldsymbol{\omega} = (-\dot{\phi}\sin\theta)\hat{\boldsymbol{e}}_1' + (\dot{\theta})\hat{\boldsymbol{e}}_2' + (\dot{\phi}\cos\theta + \dot{\psi})\hat{\boldsymbol{e}}_3'$$

This basis makes it easy to write down the top's angular momentum L, kinetic energy T, and Lagrangian \mathcal{L} . (Try it!)

 $\boldsymbol{L} = (-\lambda_1 \dot{\phi} \sin \theta) \hat{\boldsymbol{e}}_1' + (\lambda_1 \dot{\theta}) \hat{\boldsymbol{e}}_2' + \lambda_3 (\dot{\phi} \cos \theta + \dot{\psi}) \hat{\boldsymbol{e}}_3'$

$$T = \frac{1}{2}\lambda_1(\dot{\phi}^2\sin^2\theta + \dot{\theta}^2) + \frac{1}{2}\lambda_3(\dot{\phi}\cos\theta + \dot{\psi})^2$$

$$\mathcal{L} = \frac{1}{2}\lambda_1(\dot{\phi}^2\sin^2\theta + \dot{\theta}^2) + \frac{1}{2}\lambda_3(\dot{\phi}\cos\theta + \dot{\psi})^2 - MgR\cos\theta$$

We then find two ignorable coordinates: ϕ and ψ . So using the corresponding conserved quantities, we can reduce the θ EOM to a single-variable problem.

$$\boldsymbol{\omega} = (-\dot{\phi}\sin\theta)\hat{\boldsymbol{e}}_1' + (\dot{\theta})\hat{\boldsymbol{e}}_2' + (\dot{\phi}\cos\theta + \dot{\psi})\hat{\boldsymbol{e}}_3'$$
$$\boldsymbol{L} = (-\lambda_1\dot{\phi}\sin\theta)\hat{\boldsymbol{e}}_1' + (\lambda_1\dot{\theta})\hat{\boldsymbol{e}}_2' + \lambda_3(\dot{\phi}\cos\theta + \dot{\psi})\hat{\boldsymbol{e}}_3'$$
$$\boldsymbol{\mathcal{L}} = \frac{1}{2}\lambda_1(\dot{\phi}^2\sin^2\theta + \dot{\theta}^2) + \frac{1}{2}\lambda_3(\dot{\phi}\cos\theta + \dot{\psi})^2 - MgR\cos\theta$$

$$\frac{\partial \lambda}{\partial \dot{\psi}} = \lambda_3 (\dot{\psi} + \dot{\phi} \cos \theta) = P_{\psi} = \cos \theta + 2_3 \omega_3 = 2_3$$

$$\frac{\partial \chi}{\partial \dot{\psi}} = \lambda_3 (\dot{\psi} + \dot{\phi} \cos \theta) = P_{\psi} = \cos \theta$$

$$\frac{\partial \chi}{\partial \dot{\psi}} = \lambda_3 (\dot{\psi} + \dot{\phi} \cos \theta) \cos \theta = P_{\psi} = \cos \theta$$

$$= (L_2 - L_3 \cos \theta) + L_3 \cos \theta = 2_2$$

$$Digrassion: \hat{z} = -\hat{e}_1' \sin \theta + \hat{e}_3' \cos \theta$$

$$L_2 = 2 \cdot \hat{z} = \lambda_3 \dot{\phi} \sin^2 \theta + \lambda_3 (\dot{\psi} + \dot{\phi} \cos \theta) \cos \theta$$

$$L_2 = 2 \cdot \hat{z} = \lambda_3 \dot{\phi} \sin^2 \theta + 2_3 \cos \theta$$

$$\Rightarrow \lambda_3 \dot{\phi} \sin^2 \theta = L_2 - L_3 \cos \theta$$

$$\mathcal{L} = \frac{1}{2}\lambda_{1}(\dot{\phi}^{2}\sin^{2}\theta + \dot{\theta}^{2}) + \frac{1}{2}\lambda_{3}(\dot{\phi}\cos\theta + \dot{\psi})^{2} - MgR\cos\theta$$

$$O = \frac{1}{2}\lambda_{1}(\dot{\phi}^{2}\sin^{2}\theta + \dot{\theta}^{2}) + \frac{1}{2}\lambda_{3}(\dot{\phi}\cos\theta + \dot{\psi})^{2} - MgR\cos\theta$$

$$L_{1}\dot{\phi} = \lambda_{1}(\dot{\phi}^{2}\sin^{2}\theta + M_{2}R_{1})\phi$$

$$L_{1}\dot{\phi} = \lambda_{1}(\dot{\phi}^{2}\sin^{2}\theta + M_{2}R_{2})\phi$$
First consider case where $\vartheta = constant$. Since $\lambda_{1}\dot{\phi}\sin^{2}\theta = L_{2} - L_{3}\cos\theta$, $\vartheta = constant$. Since $\lambda_{1}\dot{\phi}\sin^{2}\theta = L_{2} - L_{3}\cos\theta$, $\vartheta = const \Rightarrow \dot{\phi} = const = 1$

$$O = \lambda_{1}(D_{2}^{2}\sin^{2}(\cos\theta - \lambda_{2}\omega_{2})D_{1}^{2}+M_{2}R_{2})\phi$$

$$(\lambda_{1}\cos^{2}\theta)D_{2}^{2} - (\lambda_{3}\omega_{2})D_{2}^{2} + M_{2}R_{2} = 0$$

$$D = \lambda_{2}\omega_{2} \pm (\lambda_{3}\omega_{3})^{2} - (\lambda_{3}\omega_{2})D_{1}^{2} + M_{2}R_{2} = 0$$

$$D = \lambda_{3}\omega_{3} \pm (\lambda_{3}\omega_{3})^{2} - (\lambda_{3}\omega_{3})D_{2}^{2} + M_{2}R_{2} = 0$$

$$D = \lambda_{3}\omega_{3} \pm (1 \pm (1 - \frac{4\lambda_{1}\cos^{2}M_{2}R_{2}}{(\lambda_{3}\omega_{3})^{2}})$$

 $\mathcal{T} = \frac{\lambda_3 \omega_3}{2\lambda_1 \cos \theta} \left(\left| \frac{1}{2} \right| - \frac{4\lambda_1 \cos \theta M_0 R}{(\lambda_3 \omega_3)^2} \right)$ has 2 real solutions if (13w3) > 41, MgRcord ("if wy is large enough") Math is simplest if $(\lambda_z \omega_z)^2 \gg 4\lambda_1 M_9 Reprod$ ("wz is vory large") $=\frac{2\lambda_1\cos^2}{\lambda_3\omega_3}$ (Jzwz)2 $\int \sum_{n=1}^{\infty} \frac{\lambda_3 \omega_3}{2\lambda_1 (\omega_3)^2} \frac{2\lambda_1 M_3 R(\omega_3)}{(\lambda_3 \omega_3)^2} =$ $\simeq \frac{\lambda_3 \omega_3}{\lambda_3 \omega_3}$ A, coro This can be seen from with no torque see HP GNIZS _WER = GNIS

(Skip: Just in case you wanted to see the θ EOM derived.)

$$\mathcal{L} = \frac{1}{2}\lambda_1(\dot{\phi}^2\sin^2\theta + \dot{\theta}^2) + \frac{1}{2}\lambda_3(\dot{\phi}\cos\theta + \dot{\psi})^2 - MgR\cos\theta$$

$$\frac{\partial \mathcal{G}}{\partial \theta} = \lambda_{i}\dot{\phi}^{2}\sin\theta\cos\theta + \lambda_{3}(\dot{\phi}\cos\theta+\dot{\phi})(-\dot{\phi}\sin\theta) + MgRsin\theta}$$

$$\frac{d}{\partial \theta}(\frac{\partial \mathcal{G}}{\partial \theta}) = \frac{d}{\partial \theta}(\lambda_{i}\dot{\theta}) = \lambda_{i}\dot{\theta}^{2} = \lambda_{i}\dot{\theta}^{$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● のへの

 $\lambda_1 \phi \sin^2 \theta = L_2 - L_3 \cos \theta \Rightarrow \phi = \frac{L_2 - L_3 \cos \theta}{\lambda_1 \sin^2 \theta}$ $E = T + U = \frac{1}{2}\lambda_1 \left(\phi^2 \sin^2 \theta + \phi^2\right) + \frac{1}{2}\lambda_2 \left(\psi + \phi \cos \theta^2 + M_g R_{COS} \theta + M_g$ $E = \frac{1}{2}\lambda_1 \sin^2 \theta \dot{\theta}^2 + \frac{1}{2}\lambda_1 \dot{\theta}^2 + \frac{1}{2}\lambda_3 w_3^2 + M_9 R_{COTO}$ $E = \frac{\lambda_{sl_{n}^{29}} (L_{2} - L_{3} \cos \theta)^{2}}{2} + \frac{\lambda_{10}^{2}}{\lambda_{1}^{2} \sin^{9} \theta} + \frac{\lambda_{10}^{2}}{2} + \frac{L_{3}^{2}}{2\lambda_{3}} + M_{9}Rcos\theta$ $E = \frac{\lambda_1 \delta^2}{2} + \frac{(L_2 - L_3 \cos)^2}{2\lambda_1 \sin^2 \Theta} + \frac{L_3^2}{2\lambda_3} + M_3 R \cos \Theta$ Ueff (0) $E = \pm \lambda_1 \theta + N_{eff}(\theta) \quad (one timensional problem)$ $\theta = \frac{1}{2}\lambda_1 \theta + N_{eff}(\theta) \quad (one timensional problem)$

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | 差||||の��

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Physics 351 — Friday, April 6, 2018

- Turn in HW10 either today or Monday, as you prefer. Grace will offer an extra help session this Sunday (4/8), 1pm–3pm in DRL 3W2.
- Pick up handout for HW11, due next Friday.
- This weekend, read Taylor's chapter 13 (Hamiltonian mechanics), which we'll start to discuss on Wednesday.
 Hamiltonians will be the last major topic of the semester.
- We'll spend Monday on coupled oscillators (chapter 11), so if you didn't read it last weekend, please do so now.