Physics 351 — Wednesday, April 11, 2018

» Turn in HW10 today if you have not already done so.

» HW11 due either Friday or next Monday, as you prefer. One
normal-modes problem, one generic Lagrangian problem, three
Hamiltonian problems.

» HW help this week: Grace is in DRL 2C2 Thu 5:30-8:30pm,
as usual. Bill will be in DRL 3W2 Sunday (4/15) 2-5pm,

today’s usual Wed afternoon.

» We'll spend today (only) on Ch1l (coupled oscillators). Then
finally Friday we'll start Hamiltonians — the last major topic
of the semester.

» A fun space-station video using a box of playing cards to
illustrate Euler's equations: https://youtu.be/fPI-rSwAQNg


https://youtu.be/fPI-rSwAQNg
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ClearAll["Global «"];

MinverseK := {{(kl+k2) /ml, -k2/ml},
{-k2/m2, (k2+k3)/m2}};

MatrixForm[MinverseK]

/ kl+k2 _ k2

ml ml
‘ _ k2 k2+k3
\ m2 m2

Eigenvalues [MinverseK]

{570 (k2ml+k3mi+kim2+

k2m2 - +/((-k2ml - k3ml-kim2-k2m2)? -
4 (k1k2mim2+klk3mim2+k2k3mim2))),

1
—————(k2ml+k3ml+klm2+k2m2+
2 mlm2
v ((-k2ml - k3ml-kim2-k2m2)? -
4 (k1k2m1m2+klk3m1m2+k2k3mlm2)))}



Eigenvectors[MinversekK]

{{-;[—kZml—k3m1+k1m2+
2 k2 m1

k2m2 -4/ ((-k2ml-k3ml-kim2-k2m2)?-
4 (k1k2m1m2+k1k3m1m2+kzksmlmzj)), 1},

{—;[—kZml—k3m1+k1m2+k2m2+
2 k2 ml
v ((-k2ml-k3ml-kim2-k2m2)?-

4 (k1k2mlm2+Kklk3mim2+k2k3mim2))), 1}}



matrix =
MinverseK /. {klo-k, k3s»k, k2+k, ml-s>m, m2->m};

MatrixForm[matrix]
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Eigenvalues [matrix]
3k k

Sy

Eigenvectors[matrix]

{{_1: 1]: {1: l}}



matrix =
MinverseK /. {kl-+k, k3+k, k2>k, mloam, m2-2m};
MatrixForm[matrix]

2k _k

mn mn
| -k Kk
\ 2m

Eigenvalues[matrix]

{{3+M§)k {3-#§)k}

2m ’ 2m

Eigenvectors[matrix]

{{-1-v3, 1}, {-1+43,1}}

N[%]

({-2.73205, 1.}, {0.732051, 1.}}

N[Eigenvalues[matrix]]

2.36603 k 0.633975k
{ }

m ’ m

%[[1]1]1/%[[2]]
3.73205



matrix = MinverseK /. {kl-k, k3+k, ml->m, m2->m};

MatrixForm[matrix]
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Eigenvalues[matrix]

{;, k+|:k2}

Eigenvectors[matrix]

[{1: 1}7 {_l:' l}}
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- X1[t ] = (A/2) (Cos[wlt] + Cos[w2t]);

x2[t ] := (A/2) (Cos[wlt] - Cos[w2t]);

wl =1.0; w2 = 1.1} A = 1;
Plot[{x1[t], x2[t]}, {t, @, 100}]
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Let's try out Taylor's “procedure” for Hamilton's equations.

This example illustrates the general procedure to be followed in setting up Hamil-
ton’s equations for any given system:

1.
2.

Choose suitable generalized coordinates, g, - - -, g,.

Write down the Kinetic and potential energies, T and U, in terms of the ¢’s and

q’s.

. Find the generalized momenta py, - - -, p,. (We are now assuming our system

is conservative, so U is independent of 4; and we can use p; = 97'/9¢g;. In

general, one must use p; = 0L /9q;.)

Solve for the ¢’s in terms of the p’s and ¢’s.

. Write down the Hamiltonian H as a function of the p’s and ¢’s. [Provided
our coordinates are “natural” (relation between generalized coordinates and
underlying Cartesians is independent of time), JH is just the total energy
H =T + U, but when in doubt, use H =Y p;g; — L. See Problems 13.11
and 13.12]

. Write down Hamilton’s equations (13.25).



Taylor 13.3. Consider the Atwood machine of
Figure 13.2, but suppose that the pulley is a
uniform disc of mass M and radius R. Using x
as your generalized coordinate, write down L,
the generalized momentum p, and

‘H = pi — L. Write Hamilton's equations and
use them to find Z.
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By the way, if you take the three original
Cartesian coordinates to be x, y, and ¢, then
the one generalized coordinate is ¢ = .

r =q

Yy = const. — ¢q
¢=q/R

All of these are time-independent and don’t
involve the velocities, so the generalized
coordinate ¢ is “natural” (or “scleronomous”
in Goldstein's language). Goldstein's word for
“unnatural” is “rheonomous.”

So we found
H=T+U
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Taylor 13.11. The simple form H =T + U is true only if your
generalized coordinates are “natural” (relation between generalized
and underlying Cartesian coordinates is independent of time). If
the generalized coordinates are not “natural,” you must use

H=> pi-L

To illustrate: Two children play catch inside a railroad car moving
with varying speed V' along a straight horizontal track. For
generalized coordinates you can use (z,y, z) of the ball relative to
a fixed point in the car, but in setting up ‘H you must use
coordinates in an inertial frame. Find H for the ball and show that
it is not equal to T'+ U (neither as measured in the car, nor as
measured in the ground-based frame).

Taylor wrote way back on p. 270 (Eq. 7.91) that H =T + U if

To = ra(le t aQn)

(i.e. there is no “t" and no ¢; when writing 7, in terms of the ¢;'s.)
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Taylor 13.12. Same as previous problem but use this system:

A bead of mass m is threaded on a frictionless, straight rod, which
lies in a horizontal plane and is forced to spin with constant
angular velocity w about a vertical axis through the midpoint of
the rod. Find H for the bead and show that H #T +U.
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Taylor 13.13. Consider a particle of mass m constrained to move
on a frictionless cylinder or radius R, given by the equation p = R
in (p, ¢, z) coords. The mass is subject to force F' = —kr#, where
k is a positive constant, r is distance from the origin, and # points
away from the origin. Using z and ¢ as generalized coordinates,
find H, write down Hamilton’s equations, and describe the motion.
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» Turn in HW10 today if you have not already done so.

» HW11 due either Friday or next Monday, as you prefer. One
normal-modes problem, one generic Lagrangian problem, three
Hamiltonian problems.

» HW help this week: Grace is in DRL 2C2 Thu 5:30-8:30pm,
as usual. Bill will be in DRL 3W2 Sunday (4/15) 2-5pm,

today’s usual Wed afternoon.
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finally Friday we'll start Hamiltonians — the last major topic
of the semester.

» A fun space-station video using a box of playing cards to
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