Physics 351 — Monday, April 16, 2018

>

Turn in HW11 today. HW12, due either Friday 4/20 or
Monday 4/23, as you prefer.

Two optional /XC readings: ch14 (collisions/scattering [easy])
and ch16 (continuum mechanics [long]). If you answer the
questions (click 4/18 and 4/27, respectively, on the
reading-response page), you can get +10 for ch14 and +20
for ch16 added into your reading total, which doesn't count
against your maximum +5% overall XC boost.

You can also, if you wish, earn ordinary XC by solving any
problems you like (even easy ones) from ch1l4 or ch16, and
you can solve any ** or *** problems you like from ch11.

Our topic for the rest of the semester is Hamiltonian
mechanics, but you'll read a few supplementary things for
enrichment. Final exam will cover ch 7,9,10,13 [only].

Does anyone object to a future service dog coming to class
this Friday? (He'll sit near the front of the room, | think.)



(This was the last thing we did on Friday.)
Taylor 13.11. The simple form H =T + U is true only if your
generalized coordinates are “natural” (relation between generalized
and underlying Cartesian coordinates is independent of time). If
the generalized coordinates are not “natural,” you must use

H=> pi—L

To illustrate: Two children play catch inside a railroad car moving
with varying speed V' along a straight horizontal track. For
generalized coordinates you can use (z,y, z) of the ball relative to
a fixed point in the car, but in setting up H you must use
coordinates in an inertial frame. Find 7 for the ball and show that
it is not equal to 7'+ U (neither as measured in the car, nor as
measured in the ground-based frame).

Taylor wrote way back on p. 270 (Eq. 7.91) that H =T + U if

Ta = Toc(qlv o aQn)

(i.e. there is no “t" and no ¢; when writing 7, in terms of the ¢;'s.)



Taylor 13.12. Same as previous problem but use this system:

A bead of mass m is threaded on a frictionless, straight rod, which
lies in a horizontal plane and is forced to spin with constant
angular velocity w about a vertical axis through the midpoint of
the rod. Find H for the bead and show that H #T +U.

s

o
odfe\//zv/‘?'
Al
S
i ,

(I suggest this generallzed coordinate q.)
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Morin 15.28. Two beads of mass m are connected by a spring
(with spring constant k& and relaxed length ¢) and are free to move
along a frictionless horizontal wire. Let their positions be z; and
9. Find H in terms of x1 and xo and their conjugate momenta,
then write down the four Hamilton's equations.
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Morin 15.8. Two beads of mass m are connected by a spring (with
spring constant k and relaxed length ¢) and are free to move along
a frictionless horizontal wire. Let the position of the left bead be
x, and let z be the stretch of the spring (w.r.t. equilibrium). Find
‘H in terms of z and z and their conjugate momenta, then write
down the four Hamilton's equations.
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What do you expect the general solution to the motion to look
like? (It's similar to HW problem 2 you just solved, the pendulum
mounted on a frictionless horizontal rail.)
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Taylor 13.13. Consider a particle of mass m constrained to move
on a frictionless cylinder or radius R, given by the equation p = R
in (p, ¢, z) coords. The mass is subject to force F' = —kr#, where
k is a positive constant, r is distance from the origin, and # points
away from the origin. Using z and ¢ as generalized coordinates,
find H, write down Hamilton’s equations, and describe the motion.



[F="%rt =3 Jj= chroTFlEs)]

e il
= Ltk (R*+2*) L

So wltht of Gall el = kot

T =4tn(2%+ R%p>)

\ T 2
| = L — g - = — E_
E_—f 33 T Mz % e wR = I Sl | I
— > { L_N%, N S > ‘PL
H=TrUu=To o Il () rskF=h + 8 Ly
! Zi MR B ¢
s p M :
= o= _F %?7: =0
1 a‘rf MR&- T
o W) \e
¥ = B3 L} A = o
R N p=—Fe=-ks D 2 =- g%
o A b 5



Here's a familiar problem from HW5. Let's work through it it using

Hamilton's equations instead.
3. A particle slides on the inside surface of a frictionless cone. The cone is
fixed with its tip on the ground and its axis vertical. The half-angle of the
cone is a, as shown in the left figure below. Let p be the distance from the
particle to the axis, and let ¢ be the angle around the cone. (a) Find the EOM
for p and for ¢. (One EOM will identify a conserved quantity, which you can
plug into the other EOM.) (b) If the particle moves in a circle of radius p = ry,
what is the frequency w of this motion? (c¢) If the particle is then perturbed
slightly from this circular motion, what is the frequency Q of the oscillations
about the radius p = r¢7 (d) Under what conditions does Q = w?
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The last problem illustrates one of the very few cases in which the
Hamiltonian approach has any practical advantage over the
Lagrangian approach for solving a simple problem. In this case,
since £ was independent of ¢, H was reduced to that of a 1D
problem. Instead of first writing the EOM for p and then
eliminating ¢ in favor of D¢, this elimination happened at the stage
of writing down . That makes it impossible for us to make the
frequent mistake of forgetting to eliminate qb from the p EOM
before solving for the frequency of small oscillations w.r.t. the
circular orbit p = rg.

Another stated advantage of the Hamiltonian formalism is the
ability to perform “Canonical transformations” to new variables @)
and P that still obey Hamilton's equations. Let's work through
Taylor's two examples of that. (Next time.)
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