Physics 351 — Monday, April 16, 2018

- Turn in HW11 today. HW12, due either Friday 4/20 or Monday 4/23, as you prefer.
- Two optional/XC readings: ch14 (collisions/scattering [easy]) and ch16 (continuum mechanics [long]). If you answer the questions (click 4/18 and 4/27, respectively, on the reading-response page), you can get +10 for ch14 and +20for ch16 added into your reading total, which doesn't count against your maximum +5% overall XC boost.
- You can also, if you wish, earn ordinary XC by solving any problems you like (even easy ones) from ch14 or ch16, and you can solve any ** or *** problems you like from ch11.
- Our topic for the rest of the semester is Hamiltonian mechanics, but you'll read a few supplementary things for enrichment. Final exam will cover ch 7,9,10,13 [only].
- Does anyone object to a future service dog coming to class this Friday? (He'll sit near the front of the room, I think.)

(This was the last thing we did on Friday.)

Taylor 13.11. The simple form $\mathcal{H} = T + U$ is true only if your generalized coordinates are "natural" (relation between generalized and underlying Cartesian coordinates is independent of time). If the generalized coordinates are not "natural," you must use

$$\mathcal{H} = \sum p\dot{q} - \mathcal{L}$$

To illustrate: Two children play catch inside a railroad car moving with varying speed V along a straight horizontal track. For generalized coordinates you can use (x, y, z) of the ball relative to a fixed point in the car, but in setting up \mathcal{H} you must use coordinates in an inertial frame. Find \mathcal{H} for the ball and show that it is not equal to T + U (neither as measured in the car, nor as measured in the ground-based frame).

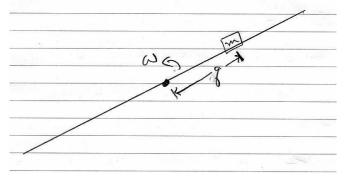
Taylor wrote way back on p. 270 (Eq. 7.91) that $\mathcal{H} = T + U$ if

$$\boldsymbol{r}_{\alpha} = \boldsymbol{r}_{\alpha}(q_1, \cdots, q_n)$$

(i.e. there is no "t" and no \dot{q}_i when writing r_{lpha} in terms of the q_i 's) and \dot{q}_i

Taylor 13.12. Same as previous problem but use this system:

A bead of mass m is threaded on a frictionless, straight rod, which lies in a horizontal plane and is forced to spin with constant angular velocity ω about a vertical axis through the midpoint of the rod. Find \mathcal{H} for the bead and show that $\mathcal{H} \neq T + U$.



(I suggest this generalized coordinate q.)

x = gcoswt J=q_sinwt V=== h1 30 $\dot{x} = g \cos t - \omega g \sin t$ $\dot{y} = \dot{g} \sin t + \omega g \cos t$ $T = \frac{1}{2}mq^2 + \frac{1}{2}mw^2q^2 \rightarrow f = \frac{1}{2}mq^2 + \frac{1}{2}mw^2q^2$ $p = \frac{\partial Z}{\partial q} = mq \implies q = \frac{p}{m}$ $T_{m} = pq^{-2} = p(m) - \frac{1}{2}m(m)^{2} - \frac{1}{2}mw^{2}q^{2} = \frac{p^{2}}{2m} - \frac{1}{2}mw^{2}q^{2}$ (T+U) relative = ½ mg² = p² = y (T+U) relative = 2mg2+2mw2g2 = 9f ground $\dot{q} = \frac{2\eta}{2\rho} = \frac{\rho}{m}$ $\dot{p} = -\frac{2\eta}{2q} = +m\omega\dot{q}$ \Rightarrow $\dot{q} = \omega^2 q$ (g increases exponentially)

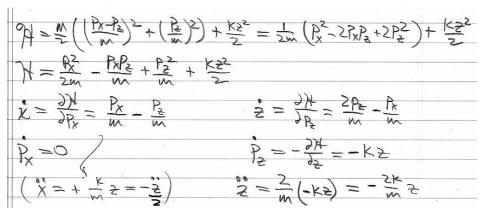
Morin 15.28. Two beads of mass m are connected by a spring (with spring constant k and relaxed length ℓ) and are free to move along a frictionless horizontal wire. Let their positions be x_1 and x_2 . Find \mathcal{H} in terms of x_1 and x_2 and their conjugate momenta, then write down the four Hamilton's equations.

XIN K, l Morin 15.28 $T = \frac{1}{2}m(x_1 + x_2)$ $= \frac{1}{2} k (X_1 + l - X_2)^2$ $P_2 = \frac{\partial f}{\partial \dot{x}_1} = \frac{\partial f}{\partial \dot{x}_2} = m \dot{x}_2$ $P_{i} = \frac{\partial f}{\partial \dot{x}_{i}} = \frac{\partial T}{\partial \dot{x}_{i}} = \mathcal{M} \dot{x}_{i}$ $\frac{1}{2}m(x_{1}^{2}+x_{2}^{2})=\frac{P_{1}^{2}+P_{2}^{2}}{2}$ $X_1 = \frac{P_1}{m}$ $X_2 = \frac{P_2}{m}$ $f = \frac{p_{i}^{2} + p_{z}^{2}}{p_{i}^{2}} - \left(\frac{p_{i}^{2} + p_{z}^{2}}{p_{i}^{2}}\right)$ $|q = P_1 X_1 + P_2 X_2 -$ = Pitpz K(X,+l-X2)2 = are $k' = \frac{5k}{5k} = \frac{k}{5k}$ $\chi_2 = \frac{\partial H}{\partial P_2} = \frac{P_2}{m}$ $P_{2} = -\frac{2}{2x_{1}} = +k(x_{1} + l - x_{2})$ $\frac{\partial \lambda}{\partial x_{i}} = -k(x_{i}+l-x_{z})$ X, $=-\frac{k}{m}(x_1+k-x_2)$ $\dot{X}_2 = \underbrace{k}_{M} \left(X_1 + \lambda - X_2 \right)$

Morin 15.8. Two beads of mass m are connected by a spring (with spring constant k and relaxed length ℓ) and are free to move along a frictionless horizontal wire. Let the position of the left bead be x, and let z be the stretch of the spring (w.r.t. equilibrium). Find \mathcal{H} in terms of x and z and their conjugate momenta, then write down the four Hamilton's equations.

Morin 15.8 $T = \frac{M}{2} \left(\frac{x^{2}}{x^{2}} + \left(\frac{x+2}{x+2} \right)^{2} \right)$ $= \frac{1}{2} m \left(\frac{2x^{2}}{x^{2}} + \frac{2x^{2}}{x^{2}} + \frac{2}{x^{2}} \right)$ $1 = \frac{1}{2} K 2^2$ $= mx^{2} + mx^{2} + \frac{1}{2}mz^{2}$ Interms of last problem's coordinates: X, = X X, = X+Z+1)+f(x) $P_x = \frac{\partial f}{\partial x} = Zm\dot{x} + m\dot{z}$ 7f(2) $B = \frac{\partial f}{\partial x} = mx + mz$ site = Pz $P_x - P_z = M x \implies x = \frac{P_x - P_z}{r}$ $m_{z}^{2} = P_{z} - m_{x}^{2} = P_{z} - (P_{x} - P_{z}) = 2P_{z} - P_{y} \implies z = \frac{2P_{z} - P_{x}}{2}$

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ● ● の Q ()・



What do you expect the general solution to the motion to look like? (It's similar to HW problem 2 you just solved, the pendulum mounted on a frictionless horizontal rail.)

(日) (同) (日) (日)

same problem are mon way: = cm position $= \frac{1}{2}(X, +X)$ lat Z+1 = X2 - X (1) 1 (2m) K22 Mtotel m=reduced wass = mx2 + ym22 R=ZMX B=ZMZ $\dot{x} = \frac{Px}{2m}$ coords "notural" => $= T + \mu = m \left(\frac{\beta_X}{2m}\right)^2 + \frac{m}{4} \left(\frac{2\beta_Z}{m}\right)^2 + \frac{1}{2} k z^2$ $= \frac{P_{x}}{4m} + \frac{P_{z}^{2}}{m} + \frac{1}{2}kz^{2}$ $x = \frac{2N}{JP_x} = \frac{P_x}{2m}$, C≢ P. = CM velocity constant $R_2 = -\frac{2H}{Jz} = -Kz$ $z = \frac{2H}{JR_2} = \frac{2R_2}{W}$ =) = = - 2K = = - K = ive coordinate occillates cinussidal

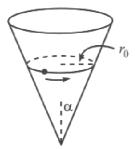
Taylor 13.13. Consider a particle of mass m constrained to move on a frictionless cylinder or radius R, given by the equation $\rho = R$ in (ρ, ϕ, z) coords. The mass is subject to force $\mathbf{F} = -kr\hat{\mathbf{r}}$, where k is a positive constant, r is distance from the origin, and $\hat{\mathbf{r}}$ points away from the origin. Using z and ϕ as generalized coordinates, find \mathcal{H} , write down Hamilton's equations, and describe the motion.

(日) (同) (三) (三) (三) (○) (○)

F=-Krf > ひ= - Kr2= $= \frac{1}{2}k(R^{2}+2^{2})$ so might or well write U = 2k22 $T = \frac{1}{2}m(\frac{1}{2}^2 + R^2\dot{\phi}^2)$ $P_{2} = \frac{\partial T}{\partial 2} = m_{2}$ $P_{0} = \frac{\partial T}{\partial 3} = m_{1}R^{2} \rightarrow \phi = \frac{F_{0}}{m_{1}R^{2}}$ $= T + U = \frac{P^{2}}{P^{2}} + \frac{1}{2}mR^{2}\left(\frac{R^{2}}{mP^{2}}\right)^{2} + \frac{1}{2}kz^{2} = \frac{R^{2}}{2} + \frac{R^{2}}{mP^{2}} + \frac{1}{2}kz^{2}$ $P_{y} = -\frac{294}{2y} = 0$ $\phi = \frac{j q + q}{j R_{s}} = \frac{R_{s}}{MR^{2}}$ B=-29#=-Kz ⇒ z=- kz $\dot{z} = \frac{\partial P_{+}}{\partial P_{-}} = \frac{P_{+}}{m}$

Here's a familiar problem from HW5. Let's work through it it using Hamilton's equations instead.

3. A particle slides on the inside surface of a frictionless cone. The cone is fixed with its tip on the ground and its axis vertical. The half-angle of the cone is α , as shown in the left figure below. Let ρ be the distance from the particle to the axis, and let ϕ be the angle around the cone. (a) Find the EOM for ρ and for ϕ . (One EOM will identify a conserved quantity, which you can plug into the other EOM.) (b) If the particle moves in a circle of radius $\rho = r_0$, what is the frequency ω of this motion? (c) If the particle is then perturbed slightly from this circular motion, what is the frequency Ω of the oscillations about the radius $\rho = r_0$? (d) Under what conditions does $\Omega = \omega$?



 $T = \frac{1}{2}m(p^2 + p^2p^2 + z^2)$ U = mqzQ= ztand => z= goota = cp ("natural") Generalized coordinates : P, Ø 2=ce x=ecose y=esing $T = \frac{m}{2} \left(\frac{p^2}{p^2} + \frac{p^2 \dot{p}^2}{p^2} + c_{g}^2 \right) \quad \mathcal{U} = m_g c_p$ $P = T + N = \frac{M}{2} \left((1 + c^{2})\dot{p}^{2} + p^{2}\dot{p}^{2} \right) + 2Mqcp$ need to rewrite in turns of P and Pa $P_{\phi} = \frac{\partial \Gamma}{\partial \phi} = mp^2 \phi \implies p \phi = \frac{P_{\phi}}{mp^2}$ $P_{g} = \frac{\partial T}{\partial e} = m(1+e^{2})\hat{g} \implies \hat{g} = \frac{P}{m(1+e^{2})}$ $\mathcal{T} = \frac{M}{2} \left((1 + c^2) \left(\frac{\mathcal{B}}{m(1 + c^2)} \right)^2 + g^2 \left(\frac{\mathcal{B}}{mp^2} \right)^2 \right) + mgc p$ $= \frac{\beta^2}{2m(1+c^2)} + \frac{\beta^2}{2mp^2} + 2mgcg =$

🗉 ୬ବ୍ଦ

 $+\frac{P^2}{2mp^2}$ $(1+c^{2})$ Ø is ignorable Pos E len 294 = 10 mo Tos. PZ 00 r_o

Consider small oscillations of p about ro. $\mathring{\mathcal{G}} = \frac{1}{m(1+c^2)} \left(\frac{\mathcal{B}^2}{m\rho^3} - mgc \right) \equiv f(\rho)$ $f(c_{s}+\varepsilon) = f(c_{s}) + \varepsilon f'(c_{s}) + O(\varepsilon^{2})$ $f(c_0) = \frac{1}{m(1+c^2)} \left(\frac{p_0^2}{m_1^3} - m_0^2 c \right) = 0$ $f'(g) = \frac{1}{m(1+c^2)} \left(\frac{p^2}{m}\right) \left(\frac{-3}{p^4}\right) = -\frac{3p^2}{m^2(1+c^2)p^4}$ $f'(r_{0}) = -\frac{3p_{0}^{2}}{m^{2}(1+c^{2})r_{y}^{4}}$ g=3€=3€=p $\tilde{\varepsilon} = -\frac{3p_{e}^{2}}{m^{2}(1+\varepsilon^{2})r_{e}^{4}} \varepsilon \implies \tilde{\Omega}^{2} = \frac{3p_{e}^{2}}{m^{2}(1+\varepsilon^{2})r_{e}^{4}} = \frac{3mgc}{mr_{e}(1+\varepsilon^{2})}$ $\mathcal{N}^{2} = \frac{3g}{C} = \frac{2g}{C} \operatorname{cards}_{\mathrm{MA}}$ or writing $P_{\mu} = m_{\rho}^{2} \phi = m_{\rho}^{2} W_{\rho}^{2}$ $S^{2} = \frac{3(m_{\rho}^{2} W_{\rho})^{2}}{M_{\rho}^{2} (1+2) \Gamma_{\nu}^{4}} = \frac{3W_{\rho}^{2}}{(1+2)}$ -> R=WSINKIJ

The last problem illustrates one of the very few cases in which the Hamiltonian approach has any practical advantage over the Lagrangian approach for solving a simple problem. In this case, since \mathcal{L} was independent of ϕ , \mathcal{H} was reduced to that of a 1D problem. Instead of first writing the EOM for ρ and then eliminating $\dot{\phi}$ in favor of p_{ϕ} , this elimination happened at the stage of writing down \mathcal{H} . That makes it impossible for us to make the frequent mistake of forgetting to eliminate $\dot{\phi}$ from the ρ EOM before solving for the frequency of small oscillations w.r.t. the circular orbit $\rho = r_0$.

Another stated advantage of the Hamiltonian formalism is the ability to perform "Canonical transformations" to new variables Q and P that still obey Hamilton's equations. Let's work through Taylor's two examples of that. (Next time.)

Physics 351 — Monday, April 16, 2018

- Turn in HW11 today. HW12, due either Friday 4/20 or Monday 4/23, as you prefer.
- Two optional/XC readings: ch14 (collisions/scattering [easy]) and ch16 (continuum mechanics [long]). If you answer the questions (click 4/18 and 4/27, respectively, on the reading-response page), you can get +10 for ch14 and +20for ch16 added into your reading total, which doesn't count against your maximum +5% overall XC boost.
- You can also, if you wish, earn ordinary XC by solving any problems you like (even easy ones) from ch14 or ch16, and you can solve any ** or *** problems you like from ch11.
- Our topic for the rest of the semester is Hamiltonian mechanics, but you'll read a few supplementary things for enrichment. Final exam will cover ch 7,9,10,13 [only].
- Does anyone object to a future service dog coming to class this Friday? (He'll sit near the front of the room, I think.)