Physics 351 — Wednesday, April 18, 2018

» HW12, due either Friday 4/20 or Monday 4/23, as you prefer.

» Bill will be in DRL 3N6 today (Wed) 4-7pm.
INSTEAD OF her usual Thursday help, Grace will be in DRL
3W?2 this Sunday from 10:30am-1:30pm.

» FYI — Millie will bring her well-trained dog to class on Friday.
They will sit near the front of the room.

» Some people have expressed interest in forming a study group
to help review or catch up on material from this course, as the
semester winds down. Learning physics really is a lot more fun
when it is done cooperatively. | am happy to faciliate this — |
think it may be especially beneficial to people who have fallen
a bit behind and may want some camaraderie to stay on track
with catching up. Even people who are caught up can benefit,
I'm sure, from reviewing and talking through the ideas. Is this
worth pursuing?



(This was the last thing we did on Monday.)
Morin 15.28. Two beads of mass m are connected by a spring
(with spring constant k& and relaxed length ¢) and are free to move
along a frictionless horizontal wire. Let their positions be x; and
9. Find H in terms of 1 and xo and their conjugate momenta,
then write down the four Hamilton's equations.
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Morin 15.8. Two beads of mass m are connected by a spring (with
spring constant k and relaxed length ¢) and are free to move along
a frictionless horizontal wire. Let the position of the left bead be
x, and let z be the stretch of the spring (w.r.t. equilibrium). Find
‘H in terms of z and z and their conjugate momenta, then write
down the four Hamilton's equations.
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What do you expect the general solution to the motion to look
like? (It's similar to HW problem 2 you just solved, the pendulum
mounted on a frictionless horizontal rail.)
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Taylor 13.13. Consider a particle of mass m constrained to move
on a frictionless cylinder or radius R, given by the equation p = R
in (p, ¢, z) coords. The mass is subject to force F' = —kr#, where
k is a positive constant, r is distance from the origin, and # points
away from the origin. Using z and ¢ as generalized coordinates,
find H, write down Hamilton’s equations, and describe the motion.
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Here's a familiar problem from HW5. Let's work through it it using

Hamilton's equations instead.
3. A particle slides on the inside surface of a frictionless cone. The cone is
fixed with its tip on the ground and its axis vertical. The half-angle of the
cone is a, as shown in the left figure below. Let p be the distance from the
particle to the axis, and let ¢ be the angle around the cone. (a) Find the EOM
for p and for ¢. (One EOM will identify a conserved quantity, which you can
plug into the other EOM.) (b) If the particle moves in a circle of radius p = ry,
what is the frequency w of this motion? (c¢) If the particle is then perturbed
slightly from this circular motion, what is the frequency Q of the oscillations
about the radius p = r¢7 (d) Under what conditions does Q = w?

o
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We wrote down H and stopped there until next time.
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The last problem illustrates one of the very few cases in which the
Hamiltonian approach has any practical advantage over the
Lagrangian approach for solving a simple problem. In this case,
since £ was independent of ¢, H was reduced to that of a 1D
problem. Instead of first writing the EOM for p and then
eliminating ¢ in favor of Pg, this elimination happened at the stage
of writing down 7. That makes it impossible for us to make the
frequent mistake of forgetting to eliminate q§ from the p EOM
before solving for the frequency of small oscillations w.r.t. the
circular orbit p = rg.

Another stated advantage of the Hamiltonian formalism is the
ability to perform “Canonical transformations” to new variables @)
and P that still obey Hamilton's equations. Let's work through
Taylor's two examples of that.



Taylor 13.24. Here is a simple example of a canonical

transformation that illustrates how the Hamiltonian formalism lets
one mix up the ¢'s and the p's. Consider a system with one DOF
and H = H(q,p). The EOMs are the usual Hamilton's equations:

oMo

Now consider new coordinates in phase space defined as Q = p
and P = —q. Show that the EOMs for Q and P are
OH P OH

that is, the Hamiltonian formalism applies equally to the new
choice of coordinates where we have exchanged the roles of
position and momentum.
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(Intermezzo)

Write H for this familiar system (mass m attached to wall via
spring k, where = denotes how far the spring is stretched w.r.t. its
equilibrium length; no friction).

Then write Hamilton's equations of motion.

Then substitute & = mw?2, which shows how you'll usually see
written for an oscillator when you study quantum mechanics.



Taylor 13.25. Here is another example of a canonical
transformation, which is still too simple to be of any real use, but
illustrates the power of these changes of coordinates.

(a) Consider a system with one DOF and H = H(q,p). Define new
coordinates () and P such that

2P sin(Q) p = V2P cos(Q)

Prove that if 9% /0q = —p and 9H /Op = ¢, then it automatically
follows that H/0Q = —P and 9H /9P = Q.

In other words, Hamilton's equations apply just as well to the new
coordinates as to the old.

(b) Show that # for a 1D harmonic oscillator with mass m = 1
and force constant k =1 is H = %(q2 + p?).

(Stay tuned for parts (c) and (d)!)
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g = V2P sin(Q) p= V2P cos(Q)

(b) Show that H for a 1D harmonic oscillator with mass m = 1
and force constant k =1 is H = %(q2 +p?).

(c) Show that if you rewrite H in terms of Q and P, then @ is
ignorable. What is P ?

(d) Solve the Hamiltonian equation for Q(¢) and verify that (when
rewritten for ¢) the solution gives the expected behavior.
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Note: Being more careful with units, you find H = wP, so P
actually has dimensions of action (same dimensions as angular
momentum), not of energy. This C.T. shows the simplest example
of transforming to so-called “action-angle” variables. @ is the

phase, ¢ = wt + 9, a.k.a. “angle”.



Recap Taylor's “Canonical transformation” example: For SHO,

p2 1 2 2
H =T+U="—+ —mw

which we know we can solve using ¢ = OH /0p and p = —9H /dq.
By inspired guess, transform to variables P and () where

2P
= V2mwP cos Q) q=1/— sinQ
mw
This lets us rewrite H as

2
2
(V2mwP cos @) +;mw2< 2P . ) — WP

2m

H(Q, P) =

and Hamilton's equations give

. OH . OH
P==5="  9=%p

i.e. we transform the problem into one whose solution is trivial.

=w = Q=wt+§
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