Physics 351 — Monday, April 23, 2018

» Turn in HW12. Last one! Hooray!

» Last day to turn in XC is Sunday, May 6 (three days after the
exam). For the few people who did Perusall (sorry!), | will
factor that in as XC.

> There is interest in forming study groups to help review or
catch up on material from this course, as the semester winds
down. Learning physics really is a lot more fun when it is done
cooperatively. To try to faciliate this, | created a Canvas
discussion area, but so far only one person has followed up.

» Don't forget the last two readings: Feynman/Hibbs (on
Canvas) for today; and Feynman's two lectures on fluids, for
Wednesday.

» | meant to finish Friday by saying that whereas Taylor's first
example of a canonical transformation was, in effect, a 90°
rotation in (p,q) space, his second example was effectively a
Cartesian-to-polar transformation of (p,q) space.



Legendre transform: given F(z), find G(s) such that G'(s) is the
inverse function of F'(x).
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Question:
» When is H conserved (i.e. a constant of the motion)?

» When does H equal the total energy?

» Notice that these are two different questions.

Morin 15.11. A bead is free to slide along a PO

frictionless hoop of radius R. The hoop is forced
to rotate with constant angular speed w around a
vertical diameter. Find H in terms of 6 and py,
then write down Hamilton's equations. Is H the
energy? Is H conserved? ;
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Morin 15.7. Consider the Atwood machine shown

in the figure. Let x and y be the vertical positions

of the middle mass and right mass, respectively,

with upward taken to be positive. Find H in 2m

terms of z and y and their conjugate momenta,

then write down the four Hamilton's equations. m 2m

(The solution to this problem turns out to be not especially
illuminating. But it does illustrate how tedious the Hamiltonian
method can be for solving problems that are straightforward using
the Lagrangian method.)

Morin writes: “If you want to demonstrate how the Hamiltonian
method can be monumentally more cumbersome than the
Lagrangian method, you can try to solve this problem in the case
of three general masses, my, mo, ms." &
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Question from Feynman/Hibbs reading: “In what way do the
classical laws of motion arise from the quantum laws?”



Question from Feynman/Hibbs reading: “In what way do the
classical laws of motion arise from the quantum laws?”

One answer: In the classical approximation, S > # so the phase
contribution is very large. So the action S is an extremum for the
special path Z(¢). All the contributions for the paths in this region
are nearly in phase at Scpassical/fi and do not cancel out. So, in the
classical limit we only need to consider the paths in the vicinity of
Z(t) as giving important contributions [to the quantum-mechanical
amplitude]. So in this way, the classical laws of motion arise from
the quantum laws.



In the reading, Feynman argued that the classical action
2]
Scl = ,C(l.’(t),l'(t),t) di

ti

is proportional to the trajectory’s quantum-mechanical phase:
phase = S /h

Many of you noticed that Feynman’s Problems 2-4 and 2-5 suggest
a way to prove, using calculus of variations, that
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Here's another route to that result: Remember that
H=pt—-L = L=pit—H

So we can rewrite the classical action as
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0S/ot +H =0 is the “Hamilton-Jacobi equation.” If we plug in
2
p
=—+U
H o + U(x)

we can write this differential equation for the classical action:

as 1 [0S\?
or in three dimensions,

oS 1 9

E + %(VS) + U(’I") =0
What is this telling us?
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For constant energy, an action of the form

S(r,t)=p-r—FEt

satisfies these equations. Notice that momentum p is L to surface
of constant S. Near the classical path, moving L to the trajectory
does not change the action — as we expect from the “principle of
stationary action.”

In Physics 250, you may have described “matter waves” using the
de Broglie relations p = hk and E = hw. This suggests

S(r,t)/h=k-r—wt

which describes the phase of a plane wave.



Meanwhile, the Hamilton-Jacobi equation

oS 1
E + 7(VS) + U(’l“) =

is starting to seem vaguely similar to Schrodinger’s equation:

2
‘wét b _ < h—v2+U( )) U(r,t)

Let's try plugging (into Schrodinger) a wavefunction

V(@) = Yo(w,t) @D/

where 1o (z,t) and X(x,t) are real (i.e. not complex) functions.
So [thg|? tells us about probability, and 3 /A tells us about phase.
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Plugging in and canceling common factor e gives real part
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which equals the Hamilton-Jacobi equation, “in i — 0 limit." So

evidently in some classical limit, the phase 3 of Schrodinger’s
W (x,t) satisfies the same diffeq. as does the classical action S.

The imaginary part gives (skip the math here)
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which can be turned into (multiply by 2¢, use 9%/0z — p if ¥ — S)
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which is (Taylor 16.130) just the continuity equation expressing
conservation of probability (1) as the particle travels.



The Schrodinger equation gives us
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while the classical Hamilton-Jacobi equation gave us
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What does it mean for f—m%%xﬁo

gaussian distribution vg(z) ~ e=*"/20* Then

Lo __1 1
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where L is the length over which the probability for finding the

particle varies appreciably, e.g. slit size, or distance over which
U(x) varies considerably. Then classical limit means

to be “small?” Consider a
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