Physics 351 — Monday, April 6, 2020

» I'm Bill Ashmanskas (Bill, Dr Bill, Prof Bill, etc), filling in for
Prof Liu today. | taught Phys 351 in 2015, 2017, 2018

» Today's focus: Taylor §10.7 & §10.8.

» These slides will be on Canvas/files as
p351_notes_20200406.pdf

» | pre-recorded a few short mini-lectures on Euler equations:
https://tinyurl.com/qoya2dz
https://tinyurl.com/t76jlqz
https://tinyurl.com/rrjdcza
https://tinyurl.com/tuycjkf
https://tinyurl.com/vhgt9ea


https://tinyurl.com/qoya2dz
https://tinyurl.com/t76jlqz
https://tinyurl.com/rrjdcza
https://tinyurl.com/tuycjkf
https://tinyurl.com/vhgt9ea
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What will the subsequently happen to V.7 To L? To w? To the
orientations of the principal axes? With no applied torque, how
does w evolve in time?



A1 = 6ma?, Ay = 8ma?, A3 = 14ma®.
Space and body axes coincide at ¢t = 0.
P (l'10) L =aP(1,2,0).

wWo = a\6r 10
) A2 — A3
w1 :wgng

1
) Az — A1
w2::w3w1“i“*
2
A1 — A2

w3 = Wiwy
3

http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.nb
http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.pdf
http://positron.hep.upenn.edu/p351/files/0327_strucktriangle_230.avi
https://www.youtube.com/watch?v=IMBRIyxDLss
Try other initial w vectors:

https://www.youtube.com/watch?v=dVhGyxkBKzI
https://www.youtube.com/watch?v=4Ntgvun8GuY
https://www.youtube.com/watch?v=YKSEu_c3YdY


http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.nb
http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.pdf
http://positron.hep.upenn.edu/p351/files/0327_strucktriangle_230.avi
https://www.youtube.com/watch?v=IMBRIyxDLss
https://www.youtube.com/watch?v=dVhGyxkBKzI
https://www.youtube.com/watch?v=4Ntgvun8GuY
https://www.youtube.com/watch?v=YKSEu_c3YdY

| derive this more understandably in this mini-lecture video:
https://tinyurl.com/qoya2dz
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https://tinyurl.com/qoya2dz

| derive this more understandably in this mini-lecture video:
https://tinyurl.com/qoya2dz
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It's fun to consider e.g. )\3 > Ay > )\1 for tossed book



| work through this (and the next page) more understandably in
this mini-lecture video: https://tinyurl.com/t76jlqz
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https://tinyurl.com/t76jlqz

| work through this (and the next page) more understandably in
this mini-lecture video: https://tinyurl.com/t76jlqz
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https://tinyurl.com/t76jlqz

If you look down the é3 axis, you'll see the tip of w tracing out an
(A3—=A2) A2
(A3—A1)A1"

ellipse whose ratio of axis lengths is




| work through this (and the next page) more understandably in
this mini-lecture video: https://tinyurl.com/rrjdcza
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Video from two 2015 students traveling back from spring break:
https://www.youtube.com/watch?v=bVpPple_174

Astronaut version:
https://youtu.be/fPI-rSwAQNg

Cosmonaut version (!): Dzhanibekov effect
https://youtu.be/dL6Pt10_gSE

https://www.youtube.com/watch?v=BGRWg4aV2omw

’ .. " .
Someone’s quasi-intuitive explanation:
http://mathoverflow.net/questions/81960/
the-dzhanibekov-effect-an-exercise-in-mechanics-or-fiction-explain-mathemat


https://www.youtube.com/watch?v=bVpPp1e_lZ4
https://youtu.be/fPI-rSwAQNg
https://youtu.be/dL6Pt1O_gSE
https://www.youtube.com/watch?v=BGRWg4aV2mw
http://mathoverflow.net/questions/81960/the-dzhanibekov-effect-an-exercise-in-mechanics-or-fiction-explain-mathemat
http://mathoverflow.net/questions/81960/the-dzhanibekov-effect-an-exercise-in-mechanics-or-fiction-explain-mathemat

A1 = 6ma?, Ay = 8ma?, Az = 14ma?.
Space and body axes coincide at ¢ = 0.

wo = L2 (1 1 0). L=aP(1,2,0).

ma\6’ 4’

. A2 — A3

Wy = wawg =
1

. Az — A1

Wy = Wawy =
2

. A1 — A2

w3 :wleT
3

http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.nb
http://positron.hep.upenn.edu/p351/files/0327 _strucktriangle.pdf
http://positron.hep.upenn.edu/p351/files/0327_strucktriangle_230.avi
https://www.youtube.com/watch?v=IMBRIyxDLss
Consider how you would go about calculating the (z,y, z) (space)
positions of vertices A, C', D vs. time. | did it by keeping track of the
(z,y, z) coordinates of the unit vectors é;, é, é3 as a function of time.


http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.nb
http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.pdf
http://positron.hep.upenn.edu/p351/files/0327_strucktriangle_230.avi
https://www.youtube.com/watch?v=IMBRIyxDLss

i
(Weglecking Ve, a8 T Lid in animation )

FH=—2qQ, LY (= ¥2aQ —QAR,
ﬁ: -\-O\Q
\-\—mﬂ —\l 00) €_> (AR, t;-(“f)

(i\‘k [CTALS D)WQr\ ‘,\]J\_.\d (/\)LI

3 - A
| Wace — (/‘): Q s QA S N4
e | S e
\ A 7 A A
(W G (=S
| NS e R
! TS we e e
- L (rr) ok
} Then 0, =W, W2 — ke
i !
\ |2d2 e updote g, 4 Therofe for
\ : 0 b Lrome o

oni et N




Torque-free precession of symmetric top:
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As seen from body frame, w precesses about é3 with frequency 2
As seen from the body frame, what does L do?

What does the situation look like from the space frame?
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As seen from body frame, L and w precess about (fixed) é3 with
frequency = Q = w3(A — A\3)/A, where A = X\ = \o.

As seen from the space frame, é3 and w precess about (fixed) L,
at a frequency that takes some effort to calculate. (You'll calculate
the space-frame precession frequency, {25, on a future HW
problem. It is much more involved than you might expect.)



http://demonstrations.wolfram.com/FreePrecession0fARotatingRigidBody/

As seen from body frame, L and w precess about (fixed) é3 with
frequency Qp = Q = w3 (A — A3)/A, where A = \; = Xs.

As seen from the space frame, é3 and w precess about (fixed) L,
at frequency Qs = L/\1, which you'll prove in the HW.


http://demonstrations.wolfram.com/FreePrecessionOfARotatingRigidBody/

From the final exam for the course | took, fall 1990. (This turns out to

be the same problem as appears in Feynman's story of the cafeteria plate
that wobbles as it flies through the air.)

An infinitely thin, uniform, square plate of mass m and side d is allowed
to undergo rotation. At time t = 0, the normal to the plate, 33,
is aligned with z, but the angular velocity vector w deviates from

z by a small angle @, Work the entire problem to first order in a,
i.e. drop terms of 0(02) or higher.

time T=0: “
Z a?
a
X
10 0
(a2) Show I = Ip{ 01 0} and find Ig.
002
(b) Find the maximum angle between Z and 23 during subsequent motion
of the plate.

(c) When is this maximum deviation first reached?
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As seen from body frame, L and w precess about (fixed) é3 with
frequency 2 = Q = w3(A — A3)/\, where A = A1 = A,

As seen from the space frame, é3 and w precess about (fixed) L,
at frequency Qs = L/\1, which you'll prove in the HW.
http://demonstrations.wolfram.com/FreePrecessionOfARotatingRigidBody/


http://demonstrations.wolfram.com/FreePrecessionOfARotatingRigidBody/
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w = w1é] + woés + wsés

symmetric top: A1 = Ao = L = A\Nwié1 + AMw2éa + Azw3és

R A3 R R .~ A3 L R
— = w161+w262+7w383 = w161+W282+w3€3+/\*w363—w363
1 1

A1
L A3 =AM
" = w + " w3€s
L AL — A3 . L R
= —_— e — Q
w )\1 + < )\1 CU3)€3 )\1 + {pes

Last line proves that w, L, and é3 are coplanar (for A\ = \2).
Torque-free (10.94): w = wqcos(Qpt)é1 — wp sin(Qpt)és + w3és
Key trick for understanding “space” and “body” cones: decompose

w into one part that points along L and one part that points along
(or opposite) és3. [Sign of 2, depends on A; vs. A3 magnitudes.]



400

Chapter 10 Rotational Motion of Rigid Bodies

e, (fixed)

L (fixed)

(a) Body frame (b) Space frame

Figure 10.9 An axially symmetric body (shown here as a prolate
spheroid or “egg-shaped” solid) is rotating with angular velocity ,
not in the direction of any of the principal axes. (a) As seen in the body
frame, both w and L precess about the symmetry axis, e;, with angular
frequency €2, given by (10.93). (b) As seen in the space frame, L is
fixed, and both @ and e, precess about L with frequency £, given by
(10.96).



Torque-free precession of axially symmetric (A1 = \2) rigid body

L AL — A
w = — + é3 with Qp = ! 3 w3
)\1 >\1
w = Wwo COS(th)él — Wo Sin(th)éQ + ws3és3

Qqpace = L /A1 points along L. Describes precession of w (and €3)
about L as seen in space frame.

dé . L o) e L) ve 2
dit?’ = wXe3z = ()\1+Qb€3>><63 = <A1)X83 = Qspaccxe3

’Qbody = —pé3 ‘ points along é3 if A3 > \; (oblate, frisbee) and

points opposite €s if A3 < A1 (prolate, US football). Describes
precession of w (and L) about €3 as seen in body frame.

L L
<d> = —wxL =— ( + Qbé3> xL = (—Qbég)XL = QbodyXL
de body )\1

Qspa,ce = w + Qbody



8. [This problem is adapted from a problem on the final exam I took for the
analogous course in fall 1990.] A uniform, infinitesimally thick, square plate
of mass m and side length d is allowed to undergo torque-free rotation. At
time ¢ = 0, the normal to the plate, és, is aligned with £, but the angular
velocity vector w deviates from £ by a small angle «v. The figure below depicts
the situation at time ¢ = 0, at which time é, = &, é; = ¢, é3 = 2, and
w = w(cosaZ + sin ad).
Z, e

(0]

1 00
time t=0 (a) Show that I=1Io | 0 1 0
0 0 2

and find the constant Ij.

W

(b) Calculate L at t = 0.

/ [ J
d 7 (c) Sketch é3, w, and L at t = 0.

‘/ (d) Draw/label “body cone” and
—d — “space cone” on your sketch.



8. [This problem is adapted from a problem on the final exam I took for the
analogous course in fall 1990.] A uniform, infinitesimally thick, square plate
of mass m and side length d is allowed to undergo torque-free rotation. At
time ¢ = 0, the normal to the plate, és, is aligned with £, but the angular
velocity vector w deviates from £ by a small angle «. The figure below depicts
the situation at time ¢ = 0, at which time é, = &, é; = ¢, é; = £, and
w = w(cosaZ + sin ad).
7, e (e) Calculate precession frequencies

time t=0 Qbody and Qgpace. Indicate directions

of precession vectors 244y and

Qgpace on drawing.

z
/‘ [ g (f) You argue in HW that
“ Qspace - Qbody + w. Verify (by
writing out components) that this

relationship holds for the Qspace and
Qpody that you calculate for ¢t = 0.




8. [This problem is adapted from a problem on the final exam I took for the
analogous course in fall 1990.] A uniform, infinitesimally thick, square plate
of mass m and side length d is allowed to undergo torque-free rotation. At
time ¢ = 0, the normal to the plate, és, is aligned with £, but the angular
velocity vector w deviates from £ by a small angle «. The figure below depicts
the situation at time ¢ = 0, at which time é, = &, é; = ¢, é; = £, and
w = w(cosaZ + sin ad).
Z, 8 . (g) Find the maximum angle between
time t=0 2 and é3 during subsequent motion of
the plate. Show that in the limit
a < 1, this maximum angle equals .

Z
/ [ 7 (h) When is this maximum deviation

first reached?

video: https://www.youtube.com/
watch?v=0H-d1rIF010



https://www.youtube.com/watch?v=oH-dlrIFO10
https://www.youtube.com/watch?v=oH-dlrIFO10

Problem: A uniform rectangular solid of mass m and dimensions
a x ax ay3 (volume v/3 a?) is allowed to undergo torque-free

rotation. At time ¢ = 0, the long axis (length a+/3) of the solid is
aligned with 2, but the angular velocity vector w deviates from 2
by a small angle o. The figure depicts the situation at time ¢ = 0,
at which time é; =&, és =9, é3 = 2, and

w = w(cos aZ + sin ).

(a) Show (or argue) that the inertia tensor
200

has the form £ =1Iy| O
0

the constant Ij.

2
0

0 and find
1

(e
S

-

a

T




(b) Calculate the angular momentum vector L at ¢t = 0. Write
L(t = 0) both in terms of €1,2,€3 and in terms of &,9,2. Which
of these two expressions will continue to be valid into the future?

(c) Draw a sketch showing the vectors €3, w, and L at t = 0. Be
sure that the relative orientation of L and w makes sense. This

relative orientation is different for egg-shaped (“prolate”) objects
(A3 < A1) than it is for frisbee-like (“oblate™) objects (A3 > A1).

(d) Draw and label the “body cone” and the “space cone” on your
sketch.

(e) Calculate the precession frequencies Qpody and gpace. Indicate
the directions of the precession vectors 264y and Qspace ON your
drawing. Be careful with the “sign” of the £2y,0qy vector, i.e. be
careful not to draw —{2,64y When you mean to draw Qy04y-



(f) You will argue in a HW problem that Qspace = Qbody + w.
Verify (by writing out components) that this relationship holds for
the Qgpace and Qpogay that you calculate for ¢ = 0.

(g) In the a < 1 limit (so tan a ~ «, tan(2a) ~ 2, etc.), find
the maximum angle between £ and é3 during subsequent motion
of the solid. (This should be some constant factor times «.) A
simple argument is sufficient here, no calculation.

(h) At what time ¢ is this maximum deviation first reached?

(This problem shows that for an American-football-like object, the
frequency of the wobbling motion is smaller than the frequency of
the spinning motion — which is opposite the conclusion that you
reached for the flying dinner plate, whose wobbling was twice as
fast as its spinning.)
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Problem 1.

A uniform rectangular solid of mass m and dimensions a x a X a+/3 (volume v/3 a?) is allowed
to undergo torque-free rotation.. At time ¢t = 0, the long axis (length av/3) of the solid is aligned
with £, but the angular velocity vector w deviates from £ by a small angle a. The figure depicts the
situation at time ¢ = 0, at which time &, =&, é; =g, 53 =z and w= w(cos a3+ sin ).

(@ bout re. G

(a) Show (or argue) that the inertia tensor‘ihas the form & (‘é]mqw ‘tﬂop
2
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(b) Calculate the angular momentum vector L at t = 0. Write L(t = 0) both in terms of &;,6,,&3

and in terms of #,4,2. Which of these two expressions will continue to be valid into the future?
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(¢) Draw a sketch showing the vectors &3, w, and L at t = 0. Be sure that the relative orientation

of L and w makes sense. This relative orientation is different for egg-shaped (“prolate”) objects
~ ’<\>\3 < A1) than it is for frisbee-like (“oblate”) objects (A3 > Ay).
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(d) Draw and label the “body cone” and the “space cone” on your sketch. = L

(e) Calculate the precession frequencies Qpoay and Qepace. Indicate the directions of the precession
vectors (pody and {dgpace On your drawing. Be careful with the “sign” of the o4y vector, ie. be
careful not to draw —§lpoay When you mean to draw Qpody-



(e) Calculate the precession frequencies lpogy and Qpace. Indicate the directions of the precession
vectors pody and Qepace 0n your drawing. Be careful with the “sign” of the Qyoqy vector, i.e. be
careful not to draw —$peqy When you mean to draw Qpody-

L A A
ﬂ’%att,: - = WAl X - é‘%m@ﬂg = w(gl X + ‘%LM‘»A ;t)
A

= (4 [omsn) £ ~(2 [wme )

At E=0, JL_ . = waid g, + ‘;_m@:aaé“}

/ Space
JL — >\3'_'>( A T -rI A\ A
o boly = T T 5T €y = 3 WESh R,
| e /-—-—-V.LA_J\
; Acde | Ay
Po= Wk, L 72 ~li [/3—[,3“ S I
L—;nﬂ.wk_i_,,ég; fDi { =3 Y =gy Uy —(i“w—“i) Wy
~ .
N “'(/Q Ld )‘)“'!‘ \! = (L
- vt LY (lwt0:¢)w(

w N L page 3 of 11
A
Q\M\Lw\gr, \ - & et
s T peedes T8 TR G



(f) You argued in HW11 that Qspace = Qboay + w. Verify (by writing out components) that this
relationship holds for the §2space and £2boay that you calculate for ¢ = 0.
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(g) In the & < 1 limit (so tana = o, tan(2a) ~ 2a, etc.), find the maximum angle between 2 and
&3 during subsequent motion of the solid. (This should be some constant factor times a.) A simple
argument is sufficient here, no calculation.
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(This problem shows that for an Atherican-football-like object, the frequency of the wobbling motion

is smaller than the frequency of the spinning motion — which is opposite the conclusion that you
reached for the flying dinner plate, whose wobbling was twice as fast as its spinning.)



We won't go over this, as Prof Liu covered this topic last week,
but I'll leave it here as an example. You might especially find it
useful that Mathematica (or Wolfram Alpha) can easily find
eigenvalues and eigenvectors for you. (See later pages.)

(Taylor 10.35) A rigid body consists of:
m at (a,0,0) = a(1, 0, 0)
2m at (0,a,a) = a(0, 1, 1)
3m at (0,a,—a) = a(0, 1,-1)
Find inertia tensor I, its principal moments, and the principal axes.
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3% WolframAlpha

[ eigenvectors {{10,0,0},{0,6,1},{0,1,6}}

B LD a5y

Input:
10 00
Eigenvectors[[ 0 6 1]]
016
Results:
vi=1(10,0)
v2=1(0,1,1)
va=1(0,-1,1)

Caorresponding eigenvalues:
A =10
=7

A3=5




Mil- m = ({10, 0, 0}, {0, 6, 1}, {0, 1, 6}}
Jut[1]= {{lo ’ O}I {Ol 6, l}l {Ol 1, 6}}

In2:= MatrixForm[m]

2)//MatrixForm=
10 0 0O
0 61 ]
0 16

In[3]= Eigenvalues [m]

outzl= {10, 7, 5}

In[4]:- Eigenvectors[m]

)UT[4 {{l O O}: {OI ll l}l {OI _ll l}}

inj5:= Eigensystem[m]

sl {{10, 7, 5},
{{l, O, O}; {OI ll l}l {Ol _ll l}}}



