
Physics 351 — Monday, April 6, 2020

I I’m Bill Ashmanskas (Bill, Dr Bill, Prof Bill, etc), filling in for
Prof Liu today. I taught Phys 351 in 2015, 2017, 2018.

I Today’s focus: Taylor §10.7 & §10.8.

I These slides will be on Canvas/files as
p351 notes 20200406.pdf

I I pre-recorded a few short mini-lectures on Euler equations:
https://tinyurl.com/qoya2dz

https://tinyurl.com/t76jlqz

https://tinyurl.com/rrjdcza

https://tinyurl.com/tuycjkf

https://tinyurl.com/vhgt9ea

https://tinyurl.com/qoya2dz
https://tinyurl.com/t76jlqz
https://tinyurl.com/rrjdcza
https://tinyurl.com/tuycjkf
https://tinyurl.com/vhgt9ea






What will the subsequently happen to Vcm? To L? To ω? To the
orientations of the principal axes? With no applied torque, how
does ω evolve in time?



λ1 = 6ma2, λ2 = 8ma2, λ3 = 14ma2.

Space and body axes coincide at t = 0.

ω0 = P
ma(16 ,

1
4 , 0). L ≡ aP (1, 2, 0).

ω̇1 = ω2ω3
λ2 − λ3
λ1

ω̇2 = ω3ω1
λ3 − λ1
λ2

ω̇3 = ω1ω2
λ1 − λ2
λ3

http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.nb

http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.pdf

http://positron.hep.upenn.edu/p351/files/0327_strucktriangle_230.avi

https://www.youtube.com/watch?v=IMBRIyxDLss

Try other initial ω vectors:
https://www.youtube.com/watch?v=dVhGyxkBKzI

https://www.youtube.com/watch?v=4Ntgvun8GuY

https://www.youtube.com/watch?v=YKSEu_c3YdY

http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.nb
http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.pdf
http://positron.hep.upenn.edu/p351/files/0327_strucktriangle_230.avi
https://www.youtube.com/watch?v=IMBRIyxDLss
https://www.youtube.com/watch?v=dVhGyxkBKzI
https://www.youtube.com/watch?v=4Ntgvun8GuY
https://www.youtube.com/watch?v=YKSEu_c3YdY


I derive this more understandably in this mini-lecture video:
https://tinyurl.com/qoya2dz

https://tinyurl.com/qoya2dz


I derive this more understandably in this mini-lecture video:
https://tinyurl.com/qoya2dz

https://tinyurl.com/qoya2dz


It’s fun to consider e.g. λ3 > λ2 > λ1 for tossed book.



I work through this (and the next page) more understandably in
this mini-lecture video: https://tinyurl.com/t76jlqz

https://tinyurl.com/t76jlqz


I work through this (and the next page) more understandably in
this mini-lecture video: https://tinyurl.com/t76jlqz

https://tinyurl.com/t76jlqz


If you look down the ê3 axis, you’ll see the tip of ω tracing out an

ellipse whose ratio of axis lengths is
√

(λ3−λ2)λ2
(λ3−λ1)λ1 .



I work through this (and the next page) more understandably in
this mini-lecture video: https://tinyurl.com/rrjdcza

https://tinyurl.com/rrjdcza




Video from two 2015 students traveling back from spring break:
https://www.youtube.com/watch?v=bVpPp1e_lZ4

Astronaut version:
https://youtu.be/fPI-rSwAQNg

Cosmonaut version (!): Dzhanibekov effect
https://youtu.be/dL6Pt1O_gSE

https://www.youtube.com/watch?v=BGRWg4aV2mw

Someone’s quasi-intuitive explanation:
http://mathoverflow.net/questions/81960/

the-dzhanibekov-effect-an-exercise-in-mechanics-or-fiction-explain-mathemat

https://www.youtube.com/watch?v=bVpPp1e_lZ4
https://youtu.be/fPI-rSwAQNg
https://youtu.be/dL6Pt1O_gSE
https://www.youtube.com/watch?v=BGRWg4aV2mw
http://mathoverflow.net/questions/81960/the-dzhanibekov-effect-an-exercise-in-mechanics-or-fiction-explain-mathemat
http://mathoverflow.net/questions/81960/the-dzhanibekov-effect-an-exercise-in-mechanics-or-fiction-explain-mathemat


λ1 = 6ma2, λ2 = 8ma2, λ3 = 14ma2.

Space and body axes coincide at t = 0.

ω0 = P
ma(16 ,

1
4 , 0). L ≡ aP (1, 2, 0).

ω̇1 = ω2ω3
λ2 − λ3
λ1

ω̇2 = ω3ω1
λ3 − λ1
λ2

ω̇3 = ω1ω2
λ1 − λ2
λ3

http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.nb

http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.pdf

http://positron.hep.upenn.edu/p351/files/0327_strucktriangle_230.avi

https://www.youtube.com/watch?v=IMBRIyxDLss

Consider how you would go about calculating the (x, y, z) (space)
positions of vertices A, C, D vs. time. I did it by keeping track of the
(x, y, z) coordinates of the unit vectors ê1, ê2, ê3 as a function of time.

http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.nb
http://positron.hep.upenn.edu/p351/files/0327_strucktriangle.pdf
http://positron.hep.upenn.edu/p351/files/0327_strucktriangle_230.avi
https://www.youtube.com/watch?v=IMBRIyxDLss




Torque-free precession of symmetric top:

As seen from body frame, ω precesses about ê3 with frequency Ω.
As seen from the body frame, what does L do?

What does the situation look like from the space frame?



As seen from body frame, L and ω precess about (fixed) ê3 with
frequency Ωb ≡ Ω = ω3(λ− λ3)/λ, where λ = λ1 = λ2.

As seen from the space frame, ê3 and ω precess about (fixed) L,
at a frequency that takes some effort to calculate. (You’ll calculate
the space-frame precession frequency, Ωs, on a future HW
problem. It is much more involved than you might expect.)



http://demonstrations.wolfram.com/FreePrecessionOfARotatingRigidBody/

As seen from body frame, L and ω precess about (fixed) ê3 with
frequency Ωb ≡ Ω = ω3(λ− λ3)/λ, where λ = λ1 = λ2.

As seen from the space frame, ê3 and ω precess about (fixed) L,
at frequency Ωs = L/λ1, which you’ll prove in the HW.

http://demonstrations.wolfram.com/FreePrecessionOfARotatingRigidBody/


From the final exam for the course I took, fall 1990. (This turns out to
be the same problem as appears in Feynman’s story of the cafeteria plate
that wobbles as it flies through the air.)



As seen from body frame, L and ω precess about (fixed) ê3 with
frequency Ωb ≡ Ω = ω3(λ− λ3)/λ, where λ = λ1 = λ2.

As seen from the space frame, ê3 and ω precess about (fixed) L,
at frequency Ωs = L/λ1, which you’ll prove in the HW.

http://demonstrations.wolfram.com/FreePrecessionOfARotatingRigidBody/

http://demonstrations.wolfram.com/FreePrecessionOfARotatingRigidBody/








ω = ω1ê1 + ω2ê2 + ω3ê3

symmetric top: λ1 = λ2 ⇒ L = λ1ω1ê1 + λ1ω2ê2 + λ3ω3ê3

L

λ1
= ω1ê1+ω2ê2+

λ3
λ1
ω3ê3 = ω1ê1+ω2ê2+ω3ê3+

λ3
λ1
ω3ê3−ω3ê3

L

λ1
= ω +

λ3 − λ1
λ1

ω3ê3

ω =
L

λ1
+

(
λ1 − λ3
λ1

ω3

)
ê3 =

L

λ1
+ Ωb ê3

Last line proves that ω, L, and ê3 are coplanar (for λ1 = λ2).

Torque-free (10.94): ω = ω0 cos(Ωbt)ê1 − ω0 sin(Ωbt)ê2 + ω3ê3

Key trick for understanding “space” and “body” cones: decompose
ω into one part that points along L and one part that points along
(or opposite) ê3. [Sign of Ωb depends on λ1 vs. λ3 magnitudes.]





Torque-free precession of axially symmetric (λ1 = λ2) rigid body

ω =
L

λ1
+ Ωbê3 with Ωb =

λ1 − λ3
λ1

ω3

ω = ω0 cos(Ωbt)ê1 − ω0 sin(Ωbt)ê2 + ω3ê3

Ωspace = L/λ1 points along L. Describes precession of ω (and ê3)
about L as seen in space frame.

dê3
dt

= ω×ê3 =

(
L

λ1
+ Ωbê3

)
×ê3 =

(
L

λ1

)
×ê3 = Ωspace×ê3

Ωbody = −Ωbê3 points along ê3 if λ3 > λ1 (oblate, frisbee) and

points opposite ê3 if λ3 < λ1 (prolate, US football). Describes
precession of ω (and L) about ê3 as seen in body frame.(

dL

dt

)
body

= −ω×L = −
(
L

λ1
+ Ωbê3

)
×L = (−Ωbê3)×L = Ωbody×L

Ωspace = ω + Ωbody



(a) Show that I = I0

 1 0 0
0 1 0
0 0 2


and find the constant I0.

(b) Calculate L at t = 0.

(c) Sketch ê3, ω, and L at t = 0.

(d) Draw/label “body cone” and
“space cone” on your sketch.



(e) Calculate precession frequencies
Ωbody and Ωspace. Indicate directions
of precession vectors Ωbody and
Ωspace on drawing.

(f) You argue in HW that
Ωspace = Ωbody + ω. Verify (by
writing out components) that this
relationship holds for the Ωspace and
Ωbody that you calculate for t = 0.



(g) Find the maximum angle between
ẑ and ê3 during subsequent motion of
the plate. Show that in the limit
α� 1, this maximum angle equals α.

(h) When is this maximum deviation
first reached?

video: https://www.youtube.com/

watch?v=oH-dlrIFO10

https://www.youtube.com/watch?v=oH-dlrIFO10
https://www.youtube.com/watch?v=oH-dlrIFO10


Problem: A uniform rectangular solid of mass m and dimensions
a× a× a

√
3 (volume

√
3 a3) is allowed to undergo torque-free

rotation. At time t = 0, the long axis (length a
√

3) of the solid is
aligned with ẑ, but the angular velocity vector ω deviates from ẑ
by a small angle α. The figure depicts the situation at time t = 0,
at which time ê1 = x̂, ê2 = ŷ, ê3 = ẑ, and
ω = ω(cosαẑ + sinαx̂).

(a) Show (or argue) that the inertia tensor

has the form I = I0

 2 0 0
0 2 0
0 0 1

 and find

the constant I0.



(b) Calculate the angular momentum vector L at t = 0. Write
L(t = 0) both in terms of ê1,ê2,ê3 and in terms of x̂,ŷ,ẑ. Which
of these two expressions will continue to be valid into the future?

(c) Draw a sketch showing the vectors ê3, ω, and L at t = 0. Be
sure that the relative orientation of L and ω makes sense. This
relative orientation is different for egg-shaped (“prolate”) objects
(λ3 < λ1) than it is for frisbee-like (“oblate”) objects (λ3 > λ1).

(d) Draw and label the “body cone” and the “space cone” on your
sketch.

(e) Calculate the precession frequencies Ωbody and Ωspace. Indicate
the directions of the precession vectors Ωbody and Ωspace on your
drawing. Be careful with the “sign” of the Ωbody vector, i.e. be
careful not to draw −Ωbody when you mean to draw Ωbody.



(f) You will argue in a HW problem that Ωspace = Ωbody + ω.
Verify (by writing out components) that this relationship holds for
the Ωspace and Ωbody that you calculate for t = 0.

(g) In the α� 1 limit (so tanα ≈ α, tan(2α) ≈ 2α, etc.), find
the maximum angle between ẑ and ê3 during subsequent motion
of the solid. (This should be some constant factor times α.) A
simple argument is sufficient here, no calculation.

(h) At what time t is this maximum deviation first reached?

(This problem shows that for an American-football-like object, the
frequency of the wobbling motion is smaller than the frequency of
the spinning motion — which is opposite the conclusion that you
reached for the flying dinner plate, whose wobbling was twice as
fast as its spinning.)















We won’t go over this, as Prof Liu covered this topic last week,
but I’ll leave it here as an example. You might especially find it
useful that Mathematica (or Wolfram Alpha) can easily find
eigenvalues and eigenvectors for you. (See later pages.)

(Taylor 10.35) A rigid body consists of:
m at (a, 0, 0) = a(1, 0, 0)

2m at (0, a, a) = a(0, 1, 1)
3m at (0, a,−a) = a(0, 1,−1)
Find inertia tensor I, its principal moments, and the principal axes.












