
Physics 3351 — Wednesday, April 5, 2023
I I’m Bill Ashmanskas (Bill, Dr Bill, Prof Bill, etc), filling in for

Prof Sako today. I taught Phys 351 in 2015, 2017, 2018.
I Our task today is basically to finish Taylor ch11 (coupled

oscillators), so that Prof Sako can start some fun new
material with you on Monday, and so that in the meantime,
you’re well prepared to work some ch11 HW problems.

I You should READ §11.5 (“the general case”) on your own, as
it is worth seeing, but I don’t think our going through it
together on the board will add any value.

I We will spend today’s class working two example problems
together: the double pendulum (which some of you already
worked as an XC problem), and three coupled oscillators.

I These slides will be on Canvas/files/notes as well as at
http://positron.hep.upenn.edu/p351/files/p351_notes_20230405.pdf

I Instead of writing down what you see me write on the board, I
want you instead to work, preferably with a friend, through
your parallel calculations to mine. I’ll give you a head start.

http://positron.hep.upenn.edu/p351/files/p351_notes_20230405.pdf


Consider a double pendulum consisting of two bobs confined to
move in a plane. The rods are of length `1 and `2, respectively,
and the bobs are of mass m1 and m2, respectively. The
generalized coordinates used to describe the system are ϕ1 and ϕ2,
the angles that the rods make with the vertical.

Let’s write the potential energy U in terms of m1, m2, `1, `2, and
the gravitational acceleration g at Earth’s surface. You go first!





OK, next write the kinetic energy. You might want to try it two
different ways. You can save yourself a bunch of tedious algebra in
writing the KE of m2 by using the trick that ~v2 = ~v1 + ~v21
where ~v21 = ~v2 − ~v1.

Then notice that

|~v2|2 = |~v1|2 + |~v21|2 + 2|~v1| |~v21| cos(∆φ)

where ∆φ is the angle between ~v1 and ~v21.

As a check, if you have time, also try using the brute-force method
of writing down x1, y1, x2, y2 and differentiating. (Yuck.)



Next slide: brute-force method for KE. I had Mathematica do the
tedious algebra! License is free for all SAS students.





Either way, we get
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If we take this Lagrangian at face value, we’ll get a pair of coupled
nonlinear ODEs. At large amplitude, the double pendulum’s
motion in fact exhibits chaotic behavior (Taylor ch12).



Mathematica has no trouble numerically integrating these two
coupled ODEs (as I’ll show later), but we seek a less messy
solution.

We prefer to study the relatively simple and elegant motion that
results at small amplitude. To do this, we have two options:

I Simplify L to 2nd order in φ1, φ2, φ̇1, φ̇2. Or else,

I get full EOMs and simplify them to 1st order in φ1, φ2, φ̇1, φ̇2.

The first option is less effort, as we drop unwanted terms sooner.
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Let’s reduce L to 2nd order in φ, φ̇ and their products. Then use
your simplified L to find the two EOMs using the Euler-Lagrange
equation. You try, then I’ll follow.





(m1 +m2)L
2
1φ̈1 + m2L1L2φ̈2 + (m1 +m2)gL1φ1 = 0

m2L
2
2φ̈2 +m2L1L2φ̈1 + m2gL2φ2 = 0

Since this is Taylor ch11, we want to find normal modes! To do
that, we first write these two equations in matrix form. Try it!





To find eigenvalues, set determinant of above matrix equal to zero
and solve for ω2 (square of angular frequency). Get two solutions
for two normal modes, corresponding to two degrees of freedom.
Try it!



Next, find the corresponding eigenvectors. Try it!











Next example! Three coupled oscillators. Let all 3 masses equal m
and let all four spring constants equal k.

Write T . Then write U . Then write L = T − U . Try it!



Now find the three EOMs and write them in matrix form. Try it!





Now find the three eigenvalues. It’s easier to work with the
dimensionless matrix above. You will find 3 dimensionless
eigenvalues λ1, λ2 λ3. Then the natural frequency ωi of the
corresponding normal mode is given by ω2

i = (k/m)λi. Try it!



Next, find the eigenvector for λ1. Try it!
Meanwhile I’ll find it on the demo setup. (About 0.416 Hz.)



Next, find the eigenvector for λ2. Try it!
Meanwhile I’ll find it on the demo setup. (About 0.768 Hz.)



Next, find the eigenvector for λ3. Try it!
Meanwhile I’ll find it on the demo setup. (About 0.98 Hz.)







I made some videos, once we found the three normal-mode
frequencies for the demonstration setup. (We should make longer
videos, with a solid backdrop, before we disassemble the demo.)

http://positron.hep.upenn.edu/p351/files/coupled_3_osc_mode_1_sloshing.mp4

http://positron.hep.upenn.edu/p351/files/coupled_3_osc_mode_2_breathing.mp4

http://positron.hep.upenn.edu/p351/files/coupled_3_osc_mode_3_beating.mp4

http://positron.hep.upenn.edu/p351/files/coupled_3_osc_mode_1_sloshing.mp4
http://positron.hep.upenn.edu/p351/files/coupled_3_osc_mode_2_breathing.mp4
http://positron.hep.upenn.edu/p351/files/coupled_3_osc_mode_3_beating.mp4
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I Remember to READ §11.5 (“the general case”) on your own,
as it is worth seeing, but I didn’t think our going through it
together on the board would add much value.

I These slides will be on Canvas/files/notes as well as at
http://positron.hep.upenn.edu/p351/files/p351_notes_20230405.pdf

I Mathematica notebook (and exported PDF):
http://positron.hep.upenn.edu/p351/files/phys3351_20230405.nb

http://positron.hep.upenn.edu/p351/files/phys3351_20230405.pdf

I I am in DRL 1W15 or at ashmansk@hep.upenn.edu .

http://positron.hep.upenn.edu/p351/files/p351_notes_20230405.pdf
http://positron.hep.upenn.edu/p351/files/phys3351_20230405.nb
http://positron.hep.upenn.edu/p351/files/phys3351_20230405.pdf

