Problem 1.

A uniform rectangular solid of mass m and dimensions a X a X a3 (volume V3 a?) is allowed
to undergo torque-free rotation. At time ¢ = 0, the long axis (length a\/g) of the solid is aligned
with 2, but the angular velocity vector w deviates from £ by a small angle o. The figure depicts the
situation at time ¢ = 0, at which time &, = &, é; = ¢, é3 = 2, and w = w(cos a2 + sin a&).
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(a) Show (or argue) that the inertia tensor has the form A
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(b) Calculate the angular momentum vector L at t = 0. Write L(t = 0) both in terms of é;,é5,é3
and in terms of &,9,2. Which of these two expressions will continue to be valid into the future?
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(c) Draw a sketch showing the vectors é;, w, and L at t = 0. Be sure that the relative orientation
of L and w makes sense. This relative orientation is different for egg-shaped (“prolate”) objects
(A3 < A1) than it is for frisbee-like (“oblate”) objects (A3 > A;).

(d) Draw and label the “body cone” and the “space cone” on your sketch.
e) Calculate the precession frequencies Qyoqv and Qgpace. Indicate the directions of the precession
(e) p q v b p

vectors pody and Qgpace 0N your drawing. Be careful with the “sign” of the Qyoqy vector, ie. be
careful not to draw —{204y When you mean to draw Qpody-
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(f) You argued in HW11 that Qgpace = Qboay + w. Verify (by writing out components) that this
relationship holds for the 2space and 2po4y that you calculate for ¢ = 0.

(g) In the o < 1 limit (so tana ~ «, tan(2a) =~ 2aq, etc.), find the maximum angle between 2 and
é; during subsequent motion of the solid. (This should be some constant factor times a.) A simple
argument is sufficient here, no calculation.

(h) At what time ¢ is this maximum deviation first reached?

(This problem shows that for an American-football-like object, the frequency of the wobbling motion
is smaller than the frequency of the spinning motion — which is opposite the conclusion that you
reached for the flying dinner plate, whose wobbling was twice as fast as its spinning.)
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Possibly useful equations.

dQ . /dQ
(E)space a (E)body ’ QXQ

mi = F+2mixQ+m@@xr)xQ = F + 2mvxQ + mQ2%pp

For a uniform solid cylinder of radius R about its symmetry axis, I = mR?/2. For a uniform thin
rod of length L about its center (perpendicular to the rod axis), I = mL?/12. For a rectangular plate
about its center (rotation axis normal to plate), I = m(a® + b*)/12, where a and b are the short and
long side lengths.

For a free symmetric top, €= L/)\;

Euler equations:
T = MW — (Mg — Ag)waws
Ty = Aol — ()\3 - )\1)w3w1
T3 = A3Ws — (A1 — Ag)wiws

If 7 =0 and A\; = Ay then the Euler equations reduce to the simpler form

o M—N ~
w3 = )\3 Wiy = 0
CJl = )\1_)\3 Wz — — ()\3_)\1 W3) Wy = —QbWQ
)\1 )\1
o N-M (=N -
Wy = )\1 wWw3wWp = )\1 W3 | Wy = wal

so we can represent the precession of the w vector as an angular velocity vector €2, with
Az — A
Qb = ( 3 1W3> ég.
A1

Euler-angle convention: Start with body axes aligned with space axes. (i) Rotate body through
angle ¢ about 2. This leaves €3 alone but rotates the first and second body axes in the xy plane. In
particular, the second body axis now points in a direction called &5. (ii) Rotate body through angle
6 about the new axis é,. This moves the body axis é3 to the direction whose polar angles are 6 and
¢. (iii) Rotate the body about é3 through whatever angle v is needed to bring the body axes é; and
€, into their assigned directions.

At any instant, you can use the values of ¢,0,1) at that instant to write each body unit vector é; as a
linear combination of &,y,2. The coefficients involve sines and cosines of ¢,0,1) but have no explicit
time dependence.
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