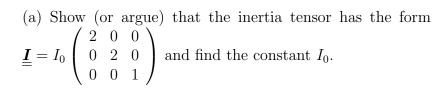
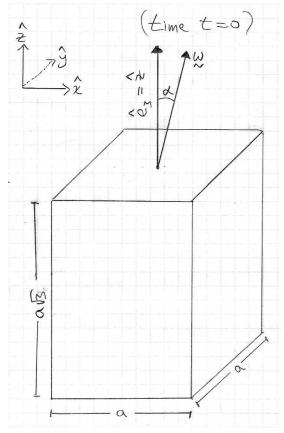
Problem 1.

A uniform rectangular solid of mass m and dimensions $a \times a \times a\sqrt{3}$ (volume $\sqrt{3} a^3$) is allowed to undergo torque-free rotation. At time t = 0, the long axis (length $a\sqrt{3}$) of the solid is aligned with \hat{z} , but the angular velocity vector $\boldsymbol{\omega}$ deviates from \hat{z} by a small angle α . The figure depicts the situation at time t = 0, at which time $\hat{\boldsymbol{e}}_1 = \hat{\boldsymbol{x}}$, $\hat{\boldsymbol{e}}_2 = \hat{\boldsymbol{y}}$, $\hat{\boldsymbol{e}}_3 = \hat{\boldsymbol{z}}$, and $\boldsymbol{\omega} = \omega(\cos\alpha\hat{\boldsymbol{z}} + \sin\alpha\hat{\boldsymbol{x}})$.





(b) Calculate the angular momentum vector \boldsymbol{L} at t = 0. Write $\boldsymbol{L}(t = 0)$ both in terms of $\hat{\boldsymbol{e}}_1, \hat{\boldsymbol{e}}_2, \hat{\boldsymbol{e}}_3$ and in terms of $\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}, \hat{\boldsymbol{z}}$. Which of these two expressions will continue to be valid into the future?

(c) Draw a sketch showing the vectors $\hat{\boldsymbol{e}}_3$, $\boldsymbol{\omega}$, and \boldsymbol{L} at t = 0. Be sure that the relative orientation of \boldsymbol{L} and $\boldsymbol{\omega}$ makes sense. This relative orientation is different for egg-shaped ("prolate") objects $(\lambda_3 < \lambda_1)$ than it is for frisbee-like ("oblate") objects $(\lambda_3 > \lambda_1)$.

(d) Draw and label the "body cone" and the "space cone" on your sketch.

(e) Calculate the precession frequencies Ω_{body} and Ω_{space} . Indicate the directions of the precession vectors Ω_{body} and Ω_{space} on your drawing. Be careful with the "sign" of the Ω_{body} vector, i.e. be careful not to draw $-\Omega_{\text{body}}$ when you mean to draw Ω_{body} .

(f) You argued in HW11 that $\Omega_{\text{space}} = \Omega_{\text{body}} + \omega$. Verify (by writing out components) that this relationship holds for the Ω_{space} and Ω_{body} that you calculate for t = 0.

(g) In the $\alpha \ll 1$ limit (so $\tan \alpha \approx \alpha$, $\tan(2\alpha) \approx 2\alpha$, etc.), find the maximum angle between \hat{z} and \hat{e}_3 during subsequent motion of the solid. (This should be some constant factor times α .) A simple argument is sufficient here, no calculation.

(h) At what time t is this maximum deviation first reached?

(This problem shows that for an American-football-like object, the frequency of the wobbling motion is smaller than the frequency of the spinning motion — which is opposite the conclusion that you reached for the flying dinner plate, whose wobbling was twice as fast as its spinning.) Possibly useful equations.

$$\left(\frac{\mathrm{d}\boldsymbol{Q}}{\mathrm{d}t}\right)_{\mathrm{space}} \;\; = \;\; \left(\frac{\mathrm{d}\boldsymbol{Q}}{\mathrm{d}t}\right)_{\mathrm{body}} \;\; + \;\; \boldsymbol{\Omega} imes \boldsymbol{Q}$$

$$m\ddot{\boldsymbol{r}} = \boldsymbol{F} + 2m\,\dot{\boldsymbol{r}} imes \boldsymbol{\Omega} + m\,(\boldsymbol{\Omega} imes \boldsymbol{r}) imes \boldsymbol{\Omega} = \boldsymbol{F} + 2m\,\boldsymbol{v} imes \boldsymbol{\Omega} + m\Omega^2
ho\,\hat{\boldsymbol{
ho}}$$

For a uniform solid cylinder of radius R about its symmetry axis, $I = mR^2/2$. For a uniform thin rod of length L about its center (perpendicular to the rod axis), $I = mL^2/12$. For a rectangular plate about its center (rotation axis normal to plate), $I = m(a^2 + b^2)/12$, where a and b are the short and long side lengths.

For a free symmetric top, $\Omega_s = L/\lambda_1$

Euler equations:

$$\tau_1 = \lambda_1 \dot{\omega_1} - (\lambda_2 - \lambda_3) \omega_2 \omega_3$$

$$\tau_2 = \lambda_2 \dot{\omega_2} - (\lambda_3 - \lambda_1) \omega_3 \omega_1$$

$$\tau_3 = \lambda_3 \dot{\omega_3} - (\lambda_1 - \lambda_2) \omega_1 \omega_2$$

If $\boldsymbol{\tau} = 0$ and $\lambda_1 = \lambda_2$ then the Euler equations reduce to the simpler form

$$\dot{\omega_3} = \frac{\lambda_1 - \lambda_1}{\lambda_3} \,\omega_1 \omega_2 = 0$$

$$\dot{\omega_1} = \frac{\lambda_1 - \lambda_3}{\lambda_1} \omega_2 \omega_3 = -\left(\frac{\lambda_3 - \lambda_1}{\lambda_1} \omega_3\right) \omega_2 = -\Omega_b \omega_2$$
$$\dot{\omega_2} = \frac{\lambda_3 - \lambda_1}{\lambda_1} \omega_3 \omega_1 = \left(\frac{\lambda_3 - \lambda_1}{\lambda_1} \omega_3\right) \omega_1 = \Omega_b \omega_1$$

so we can represent the precession of the ω vector as an angular velocity vector Ω_b with

$$\mathbf{\Omega}_b = \left(rac{\lambda_3 - \lambda_1}{\lambda_1}\,\omega_3
ight)\, \hat{oldsymbol{e}}_3.$$

Euler-angle convention: Start with body axes aligned with space axes. (i) Rotate body through angle ϕ about \hat{z} . This leaves \hat{e}_3 alone but rotates the first and second body axes in the xy plane. In particular, the second body axis now points in a direction called \hat{e}'_2 . (ii) Rotate body through angle θ about the new axis \hat{e}'_2 . This moves the body axis \hat{e}_3 to the direction whose polar angles are θ and ϕ . (iii) Rotate the body about \hat{e}_3 through whatever angle ψ is needed to bring the body axes \hat{e}_2 and \hat{e}_1 into their assigned directions.

At any instant, you can use the values of ϕ, θ, ψ at that instant to write each body unit vector $\hat{\boldsymbol{e}}_i$ as a linear combination of $\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}, \hat{\boldsymbol{z}}$. The coefficients involve sines and cosines of ϕ, θ, ψ but have no explicit time dependence.